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NOMENCLATURE 
A = column cross-sectional area 
a = exponential model coefficients 
B = Bayes factor 
b0 = body force vector with respect to the undeformed configuration, physical coordinates 
b = buckling state 
C = fourth-order elasticity tensor, physical coordinates 
C =  Bayesian hypothesis testing-based confidence metric 
Cp = coefficient of pressure 
c =  Eckert’s reference temperature discrepancy model coefficients 
D = damping matrix, modal coordinates 
D = diameter of the spherical dome wind tunnel specimen 
d = heat transfer discrepancy model coefficients 
E = Green strain tensor, physical coordinates 
E = modulus of elasticity 
e = model error 
F = deformation gradient tensor, physical coordinates 
Fcr = Euler buckling load for a column 
Fi = ith force from external excitation, modal coordinates 
f1 = first natural frequency 
f3 = third natural frequency 
H = height of the spherical dome wind tunnel specimen 
I = moment of inertia 
K(1) = linear stiffness matrix, modal coordinates 

( )2
ijlK  = element of the third-order tensor associated with quadratic terms, modal coordinates 
( )3
ijlpK  = element of the fourth-order tensor associated with the cubic terms, modal coordinates 

K = number of possible states 
L = column length 
M = mass matrix, modal coordinates 
M = Mach number 
N = number of samples 
p = aerodynamic pressure 
Q = aerodynamic heat flux 
q = dynamic pressure (ρU2/2) 
Req = equivalence ratio (fuel-to-air ratio divided by stoichiometric fuel-to-air ratio) 
S = second Piola-Kirchhoff stress tensor, physical coordinates 
S = main effect sensitivity index 
ST = total effect sensitivity index 
T = temperature 
Tbuck = critical buckling temperature 
t = time 
U(n) = modal basis function 
U = flow velocity 
u = displacement vector, physical coordinates 
Wi = transverse component of mode shape i 
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w = transverse panel displacement 
x = model prediction, location along dome 
y = observed data 
zc = critical state boundary value 
z = vector of measured variables 
α = coefficient of thermal expansion 
β = oblique shock angle relative to freestream 
δ = tolerance limit 
δij = Kronecker delta 
ε = model error, measurement error 
γ = ratio of specific heats 
φ = uncertain input and model parameters  
µ = mean 
η(t) = response vector, modal coordinates 
η = model prediction 
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π = probability density function 
θ = panel inclination angle to freestream 
ρ = density 
σ = standard deviation 

Subscripts 
aw = adiabatic wall 
e = edge of boundary layer 
i = variable index, position along spherical dome 
true = true value of x 
pred = model prediction of x 
w = wall, aerodynamic surface 
ERT =  Eckert’s reference temperature method 
OS =  oblique shock relations 
PT =  Piston theory 
1 = freestream flow 
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4 = flow at location of interest along the panel 

Superscripts 
fp = flat plate 
sd = spherical dome 
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ABSTRACT 
Lack of confidence in structural response and life predictions of a vehicle exposed to 

combined extreme environments has consistently prevented the USAF from fielding affordable, 
reliable, and reusable hypersonic space access platforms. Significant strides have been made in 
modeling complex interactions of the multi-physics, fluid-thermal-structural coupling applicable 
to hypersonic flow conditions. However, validation of these models remains a challenge due to 
limited experimental data for hypersonic conditions. This research addresses fundamental and 
critical issues in quantifying uncertainty and assessing the confidence in model predictions of 
hypersonic structural response through a systematic framework. The first year of this research 
focused on identifying and developing the components of the model uncertainty framework for 
aerodynamic pressure and heating predictions, including global sensitivity analysis, Bayesian 
model calibration, and validation metric comparison. The second year emphasized effectively 
integrating information into the coupled system through segmented Bayesian model calibration. 
The final year brought together model discrepancy in aerodynamic pressure calibrated from 
aerothermal experiments with nonlinear structural dynamic reduced order models to investigate 
the uncertainty and sensitivity in coupled aeroelastic response (i.e., flutter and limit cycle 
oscillation).  
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1 INTRODUCTION 
Uncertainty inherently exists in all computational model predictions due to imperfect 

knowledge and physical variability in the system, model order reduction, assumptions and 
approximations, and the limited experimental data available for model validation. This is 
especially the case for structures in hypersonic environments due to the complex and poorly-
understood loading from the inherently coupled multi-physics nature of the fluid-thermal-
structural interaction. In traditional deterministic design, a margin of safety is introduced to 
safeguard against uncertainty. However, this can lead to an inefficient or an unrealizable design. 
For an aircraft to achieve the demanding performance requirements of sustained hypersonic 
flight, weight is a very significant design constraint [1-3]. Therefore, this research effort was 
focused on acquiring the fundamental understanding required for integrating various sources of 
uncertainty in a coupled aerothermoelastic simulation, identifying the most significant error 
sources, and developing a method for dynamically quantifying model prediction confidence 
during transient, combined, aerothermal and aero-pressure loading. 

Substantial research has been performed on investigating the model components for the 
physics of a coupled aerothermoelastic panel and the solution procedures for both quasi-static 
and dynamic solutions [4-12]. However, the current state of the art focuses on deterministic 
calculations with limited uncertainty analysis. Lamorte et al. investigated the implementation of 
a stochastic collocation approach for propagating uncertainty in aerothermoelastic analysis [13]. 
Related work expanded on uncertainty propagation in aerothermoelastic analysis for hypersonic 
vehicles with emphasis on assessing the impact of aerothermoelastic deformation on 
aerodynamic heating [14]. Culler et al. also identified 2-way coupling between structural 
deformation and aerodynamic heating as an important consideration in modeling an 
aerothermoelastic panel [11]. Ostoich et al. looked at the heat flux into a spherical dome 
protuberance on a flat plate model, calculated from high-fidelity, fully compressible Navier-
Stokes equations without turbulence model and compared the results to experimental data and 
lower-order methods [15,16]. Rangavajhala et al. investigated the discretization error associated 
with multidisciplinary analyses caused by mesh sizes and mismatch of disciplinary meshes [17]. 
These efforts underscore the importance of understanding the uncertainty in a coupled 
aerothermoelastic model; however, many questions remain about the significant sources of 
uncertainty and how to assess the confidence in multi-physics model predictions. 

The model uncertainty framework used in this research is founded in Bayesian statistics, 
which is an effective approach for uncertainty reduction and confidence assessment through the 
integration of computational prediction and experimental observation. For highly coupled, multi-
physics problems in which data can be sparse and models can be numerous, it is necessary to 
connect them in a systematic way to reduce uncertainty. Bayesian networks are used to reflect 
the complex relationships between sources of uncertainty and model predictions, which are 
represented as nodes in the network. The value of Bayesian networks lies in their ability to apply 
experimental data to individual nodes and reduce uncertainty over the entire network [18,19]. 
This is particularly useful for coupled, aerothermoelastic models in which data is not necessarily 
available to validate the fully-coupled prediction; however, data from a subset of the coupled 
physics can be readily integrated into the network. 

The next subsection discusses the developed model uncertainty framework and the and the 
aspects of uncertainty quantification (UQ) and validation and verification (V&V) considered 
during this research effort. 
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1.1 Uncertainty Quantification and Model Prediction Confidence Assessment 
Quantifying the confidence in model prediction consists of two intertwined, yet distinct, 

activities: uncertainty quantification (UQ) and verification and validation (V&V). The science of 
uncertainty quantification for numerical simulations (i.e., the quantitative characterization and 
reduction of uncertainties) has origins dating back to the early-1990’s. However, over the past 
decade there has been a surge in multiple research communities towards formalizing and 
generalizing the process. Thus, there are now multiple descriptions and implementations of the 
UQ and V&V processes that are all similar in their objectives, but different in their details. Due 
to the nature of UQ and V&V research, it is necessary to establish terminology and research 
scope. Uncertainty is inherent in all computational model predictions due to imperfect 
knowledge and physical variability in the system, model order reduction, assumptions and 
approximations, and the limited experimental data available for model calibration and validation. 
This is especially the case for compliant structures in hypersonic environments due to the 
complex and poorly-understood loading and the coupled multi-physics nature of the fluid-
thermal-structural interaction. Physical variability is incorporated in fluid-thermal-structural 
models through variations in material properties, geometry, boundary conditions, and load 
interactions. The aerothermoelastic model prediction also has both model-form error and 
numerical errors. Model-form error encompasses the errors in representing the physical system 
with a particular model. These errors are assessed by comparing model predictions to physical 
observations. Numerical errors include errors from sampling, discretization, coupled solution 
procedures, and solution approximation error from model order reduction. This research focused 
on uncovering the most significant contributors to the overall uncertainty from each individual 
model component of the coupled system, in addition to quantifying the uncertainty associated 
with the degree of coupling. 

Regarding V&V, the primary interest for this research is on validation, due to the significant 
challenges posed by the limited experimental data available for structures operating in 
hypersonic environments. Validation metrics can be used in several different ways for 
uncertainty management, including model selection, model validation, or model prediction 
confidence. Note that in this context, model prediction confidence refers to the case when a 
validation metric must be extrapolated beyond the validation domain of the experiment.  

Considering the UQ and V&V discussion above, a framework for quantifying model 
prediction confidence for hypersonic aerostructures was developed and is shown in Figure 1.1. 
The first component focuses on characterizing model uncertainty, which is accomplished by 
constructing a Bayesian network and calibrating the uncertain parameters and model discrepancy 
[20-22]. This is not just about quantifying the uncertainty in each of the individual uni-
disciplinary constituent models, but rather about quantifying the uncertainty in the coupled 
interactions of the multi-fidelity, multi-physics models, as well. The second component 
addresses efficiently propagating the model uncertainties forward to a quantity of interest (QoI) 
in the coupled system. In this construct, the sensitivity of the QoI to each of the uncertain inputs 
and model errors can be evaluated, which is important for identifying where to focus the 
resources for uncertainty reduction efforts. The third and final component is managing the 
uncertainty by using data for multiple different purposes, such as prediction confidence 
assessment, model validation, and/or model selection. 
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Figure 1.1.  Framework for integrating of models, data, and uncertainty 

1.2 Report Overview and Outline 
This Lab Task effort takes the initial steps in a longer-term research plan for developing a 

framework for integrating various sources of uncertainty in a coupled hypersonic structural 
simulation and assessing the confidence in model predictions. The FY12-14 Lab Task consisted 
of three primary objectives. The first objective is to develop a systematic framework for 
enabling the integration of the various sources of uncertainty from the individual disciplines of a 
fully-coupled system. The second objective is to investigate uncertainty quantification and 
analysis of fluid-thermal-structural interactions in hypersonic flow. The third objective is to 
provide a decision-making metric for determining the necessary model fidelity and degree of 
coupling to achieve the desired level of confidence in the system prediction. All three objectives 
play a critical role in assessing the predictive capability of a coupled aerothermoelastic system 
model. The objectives were addressed through several related investigations, presented in 
Sections 3-8 of this final report. 

Section 2 introduces the aerothermoelastic coupled system considered throughout this 
research, including aerothermal models and historic high-speed wind test data. The first year of 
this research (Section 3) focused on identifying and developing the components of the model 
uncertainty framework for aerodynamic pressure and heating predictions, including global 
sensitivity analysis, Bayesian model calibration, and confidence assessment [23,31]. The second 
year emphasized effectively integrating information into the coupled system through segmented 
Bayesian model calibration, as well as using time-dependent aerothermal data in the Bayesian 
network, discussed in Sections 4 and 5, respectively [24,25,33]. A pre-validation study was also 
conducted (Section 7) for the historic aerothermal data to determine if the models being 
considered adequately captured the observed flow characteristics [27]. The third year brought 
together model discrepancy in aerodynamic pressure calibrated from aerothermal experiments 
with nonlinear structural dynamic reduced order models to investigate the uncertainty and 
sensitivity in coupled aeroelastic response (i.e., flutter and limit cycle oscillation), which is 
covered in Section 6 [26,32,34]. Finally, many real world systems have discrete operating states, 
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e.g., pre-buckled or post-buckled columns, laminar or turbulent flow, elastic or plastic response, 
and various stages of wear. Identification of precise boundaries between states is typically very 
challenging due to incomplete understanding of physical processes and experimental uncertainty. 
In Section 8, a method was developed for quantifying the uncertainty in state boundaries for thin 
beam buckling [28,35,36].  
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2 AEROTHERMOELASTIC COUPLING 
Aircraft structures exposed to extreme environments are subjected to coupled aerodynamic, 

thermal, and acoustic loading [4-12]. Neglecting these interactions can lead to gross errors in 
model predictions [10-13,38,39].To account for these uncertainties, hypersonic aircraft structures 
must be designed to within accurately-quantified safety margins that are not overly conservative, 
so that the platform can have the minimum structural weight that permits proper execution of the 
mission objectives [40]. When the structure is designed to these margins, it must necessarily 
operate at the intersection of the applicable technical disciplines associated with extreme 
hypersonic environments, and be able to withstand intense, coupled, structural, fluid, thermal, 
and acoustic loads [4-8]. 

Consider a panel section on the forebody of a representative hypersonic vehicle configuration, 
as shown in Figure 2.1 [11]. As the vehicle is subjected to a hypersonic flow, an attached oblique 
shock is created at the forebody leading edge (location ‘1’). This results in aerodynamic pressure 
applied to the area of interest (location ‘4’), causing elastic deformation of the panel into the 
flow field, which feeds back to affect the aerodynamic loads on the panel. This is commonly 
referred to as the aeroelastic portion of the coupling. The panel is also subjected to aerothermal 
effects from aerodynamic heating. This aerothermal component is also coupled to the aeroelastic 
component, since a change in the temperature of the structure causes additional deformation, 
which in turn further affects both the aerodynamic pressure and the aerodynamic heating. The 
wetted surface of the structure acts as a boundary condition to the flow problem and the 
aerodynamics load the structure. The panel experiences extreme aerodynamic pressure and 
heating as the temperature of the air increases within the inviscid boundary layer. Heat transfers 
to the body, where the temperature gradient in the panel induces deformation due to temperature-
dependent material properties and thermal moments, in addition to structural dynamic 
deformation.  

 
Figure 2.1.  Representative hypersonic vehicle structure with aerothermoelastic panel [11] 
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Figure 2.1 schematically illustrates the fluid-thermal-structural interactions as a coupled 
aerothermoelastic response, consisting of the following individual model components: 
aerodynamic pressure, aerodynamic heating, heat transfer, and structural deformation. Modeling 
these coupled disciplines is crucial to accurately predicting the structural response under 
hypersonic flow conditions. McNamara and Friedmann (2007) provide a comprehensive review 
of the current state-of-the-art for solution strategies for calculating the response of a hot structure 
in a hypersonic flow [4].  

 
 

 

Figure 2.2.  Coupling in aerothermoelasticity 

Up to this point, the coupling of aero-thermo-structural disciplines has been discussed 
generally. However, the fidelity at which each of the individual disciplines is modeled, and how 
these multi-fidelity models are then coupled together, is a significant consideration for correctly 
quantifying the uncertainty in the coupled system. The aerothermoelastic plate can be modeled at 
multiple levels of fidelity for each of the aerodynamic, structural, and thermal effects, 
respectively. Limitations on computational resources and the acceptable amount of uncertainty in 
the quantity of interest are often competing constraints that drive the degree of model fidelity and 
the level of coupling selected for simulation purposes. For example, the aerodynamic pressure 
and heating could be calculated using a computational fluid dynamics (CFD) code (e.g., 
CFL3D). Conversely, the decision could be made to use lower-fidelity aerothermal model 
components, such as piston theory and Eckert’s reference methods [9,11,15,12,41,42]. For quasi-
static calculations, the CFD approach adds minimal cost. However, the computational time 
drastically increases for a transient dynamic solution. To reduce the computational cost, the 
aeroelastic components of the coupled problem can be approximated with nonlinear reduced 
order models (ROMs) built from finite element models and piston theory [43]. However, the use 
of reduced order models introduces solution approximation and model-form errors. Therefore, in 
many cases, to quantify the uncertainty of the coupled aerothermoelastic system, the numerical 
and model-form errors of each model component must be quantified and propagated throughout 
the system. For example, model uncertainty in aero-pressure predictions from piston theory 
could be the primary contributor to the uncertainty in aerodynamic heating [24] and structural 
response predictions [26] when coupled together. These are two of the key observations from 
this Lab Task investigation, which will be covered in Sections 4 and 6, respectively.  
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The next section defines several of the model components in the aerothermoelastic system 
shown in Figure 2.2. 

2.1 Aerothermoelastic Models 
Given the freestream flight conditions (p1, M1, T1) and the surface inclination angle (θ) from 

Figure 2.1, the local conditions at the leading edge of the panel (p3, M3, T3) resulting from an 
oblique shockwave can be computed using oblique shock relations, shown in Eqs. (2.1) - (2.4). 
The oblique shock calculations do not have any dependency on the geometry of the panel itself, 
solely the surface inclination of the forebody and freestream conditions. Thus, it is only valid at 
locations where no structural deformation is present (i.e. flat plate). 
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Once the flow properties at the leading edge of the panel are calculated from oblique shock 
relations, piston theory provides a simplified relationship between the unsteady pressure on the 
panel and turbulent surface pressure [41]. This simple model is desired for computational 
tractability and uses the leading edge conditions to approximate the aerodynamic pressure load 
chord-wise across the panel (p4, M4, T4). In piston theory, the pressure prediction is dependent on 
the slope of the panel (∂w/∂x) and the velocity of deformation (∂w/∂t). A 3rd-order expansion of 
piston theory is presented in Eq. (2.5). 

 
2 3

23
4 3 3 3

3 3 3 3

1 1 1 1 12
4 12

q w w w w w wp p M M
M U t x U t x U t x

γ γ      ∂ ∂ + ∂ ∂ + ∂ ∂ = + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂       
 (2.5) 

After calculating the aerodynamic pressure and flow conditions along the panel surface, the 
aerodynamic heat flux is predicted using the computationally efficient Eckert's reference 
temperature method assuming a calorically perfect gas [42]. The Eckert's reference temperature 
is computed by Eq. (2.6) and the heat flux across the spherical dome follows in Eq. (2.7). 

 *
3 30.5( ) 0.22( )w e awT T T T T T= + − + −   (2.6) 
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 * * *
4 ( )e p aw wQ St U c T Tρ= −   (2.7) 

where, St* is the reference Stanton number, ρ* is the reference density, Ue is the inviscid flow 
velocity at the dome location, *

pc  is the reference specific heat, Taw and Tw are the adiabatic wall 
and actual wall temperature, respectively and Te is the boundary layer edge temperature.  

2.2 Aerothermal Experiments 
Accurately modeling aero-thermo-elastic response for hypersonic aircraft structures is 

obviously challenging, especially due to the inability to replicate the bulk of the in-flight loading 
conditions through ground test facilities and hence improve the models being used. Laboratory 
experiments to approximate these unfamiliar flight environments is the other half of ensuring 
accurate aero-thermo-acoustic modeling. However, the available experimental techniques and 
facilities are not fully capable of simultaneously capturing coupled aerothermoelastic response in 
hypersonic flow. Therefore, we must rely on maximizing the utility of whatever data can be 
acquired, or may already be available, for a subset of the multi-physics interactions. For 
example, historical tests performed by Glass and Hunt in 1986 at NASA’s 8ft High-Temperature 
Wind Tunnel (HTT) investigated the thermal and structural loads on body panels in hypersonic 
environments [44]. These tests measured the aerodynamic pressure and heating on spherical 
dome protuberances into the flow that simulated deformed aircraft panels. But these tests were 
performed on rigid domes protruding into the flow and were not instrumented to measure 
structural response, thus the dynamic structural response was not captured. The 8-foot High-
Temperature Tunnel can simulate up to Mach 7 flow at an altitude between 25 and 40 km for up 
to 2 minutes by combusting a mixture of methane and air. The flow conditions for the tests of 
interest had a turbulent boundary-layer at the panel location, and the panel holder had a sharp 
leading edge, similar to the representative hypersonic vehicle depicted in Figure 2.1.  

The experiments performed by Glass and Hunt used a flat plate specimen to record the 
aerodynamic pressure and heat flux at the center of the plate as a reference. In addition, spherical 
pressure and thermal domes with a diameter of 35.6 cm and the three H/D ratios shown in Table 
2.1 were instrumented. Table 2.1 also summarizes the freestream conditions p1 and M1, for each 
test. A schematic of the test specimen and the 58 instrumented locations is shown in Figure 2.3. 
For the purposes of this study, the analysis is limited to the points along the centerline parallel to 
the flow. An investigation by Ostoich et al. [15,16] discovered that the recorded data at points 1 
and 38 may have been affected by an uncharacterized gap between the dome and plate, thus only 
the middle 11 data points along the centerline (points 2-39) were considered. 
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Figure 2.3.  Instrumentation locations on spherical dome geometry [44] 

Table 2.1. Experimental conditions from Glass and Hunt tests [44] 

 

 
During the experiment, thermocouples recorded temperature measurements at 20 samples per 

second over approximately 5 seconds. Using an initial dome temperature Tw,0 as 300K, a time-
dependent temperature profile across the dome centerline was generated using the linear finite-
difference heat transfer relationship between heat flux and temperature change across time, 
Q=ρCpτ ΔTw/Δt.  This same one-dimensional heat transfer relationship was used by Glass and 
Hunt to estimate the reported heat flux from the thermocouple readings, where τ is the dome 
thickness of 0.00157m, ρ and Cp are density and specific heat of aluminum (7000 series), and Δt 
is equivalent to 20 samples per second. 

The linear quasi-static approximation for temperature history derivation is presented in Eq. 
(2.8), also demonstrating the presence of random normal measurement error with zero mean and 
standard deviation of 0.5K. Furthermore, from recognizing a linear model may misrepresent the 
true underlying physics of the coupled aerothermoelastic problem, an exponential discrepancy is 
manufactured to approximately simulate reaching equilibrium temperature (a0=0.75K, a1=0.5s-1), 
also shown in Eq. (2.8).  

 

𝑇𝑇w,i+1 = 𝑇𝑇w,i +
𝑄𝑄Δ𝑡𝑡
𝜌𝜌𝐶𝐶𝑝𝑝𝜏𝜏

+ 𝑎𝑎0 exp(𝑎𝑎1𝑡𝑡) + 𝜀𝜀𝑇𝑇(0,𝜎𝜎n) (2.8) 

 

Test M1 p1, Pa D, m H/D Boundary 
Layer 

Run 30 6.60 645.9 0.355 0.028 Turbulent 
Run 31 6.60 648.0 0.355 0.013 Turbulent 
Run 32 6.59 645.9 0.355 0.006 Turbulent 
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Figure 2.4.  Estimated transient temperature distributions from Runs 30, 31, and 32 

The temperature profiles over 5 seconds in Runs 30, 31, and 32 are shown in Figure 2.4. 
There is an absence of two Run 31 transient temperature histories along the dome due to missing 
heat flux measurements those points. The transient aerothermal data is used in this investigation 
for Bayesian model calibration and prediction confidence assessment for coupled, time-
dependent aerothermal analysis.  
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3 ERROR QUANTIFICATION AND CONFIDENCE ASSESSMENT OF 
AEROTHERMAL MODEL PREDICTIONS 

This section analyzes the prediction error for the Glass and Hunt experiments [44] using the 
assumptions and results from Culler et al. [11]. This work reevaluates some of the assumptions 
and errors that were observed in the previous study.  

First, a description of the uncertain input parameters in the experiments and aerodynamic 
pressure and heating calculations is provided with sensitivity analysis. Next, two sets of 
experimental data are used to calibrate uncertain model inputs and errors. The calibrated inputs 
are then used to update nominal predictions for the spherical dome experiments. Then, a third 
data set is used for validation with Bayesian hypothesis testing-based confidence. Finally, a 
model selection study is performed using the confidence metric for different forms of piston 
theory.  

3.1 Model Input Uncertainty and Sensitivity Analysis 
Consider the flat plate specimen, where oblique shock relations are used for aerodynamic 

pressure 4
fpp  and Eckert’s reference temperature method for aerodynamic heating 4

fpQ . Note that 
for the flat plate, we are interested in the value at the center of the plate, which corresponds to 
location ‘4’ in Figure 2.1. The flat plate experiments consisted of three tests (Runs 30, 31, and 
32), which all correspond to the same nominal inputs and turbulent boundary-layer with a sharp 
leading edge panel holder. For these tests, the freestream pressure p1, and Mach number M1, 
were given as shown in Table 2.1. In addition, the output aerodynamic pressure and heat flux 
were measured at the center of the flat plate. However, three critical pieces of information were 
not available in the Glass and Hunt report [44]: the freestream temperature T1, wall temperature 
Tw4, and equivalence ratio Req. Therefore, realistic values had to be estimated from other reports 
of similar testing.24 The mean freestream and wall temperatures are assumed to be 220K and 
300K, respectively. The equivalence ratio is also uncertain, but for the current investigation a 
constant value of Req = 0.9 is assumed. 

To get a better understanding of the uncertainty in the outputs and their sensitivity to the 
inputs, statistical distributions were assumed for the inputs. Since p1 and M1 were measured, 1% 
coefficient of variation (CV) is used for measurement variability. However, 10% CV is used for 
T1 and Tw4 since they were not reported and had to be assumed. Normal distributions are used for 
all four random inputs and their distribution parameters are shown in Table 3.1. 
 

Table 3.1.  Uncertainty for inputs to aerodynamic pressure and heat flux calculations 
Measured 

Inputs Mean Standard 
Deviation 

Coefficient of 
Variation 

p1 (Pa) 652.5 6.525 1% 
M1 6.6 0.066 1% 

Uncertain 
Inputs Mean Standard 

Deviation 
Coefficient of 

Variation 
T1 (K) 220 22.0 10% 
Tw4 (K) 300 30.0 10% 
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Local and global sensitivity analyses are performed to investigate the sensitivity of 
aerodynamic pressure and heating to the input variables. For defining the sensitivity measures, 
let ( )1 2, , , nY f X X X= 2 , where Xi is the measured or uncertain inputs and Y is the resulting 
random output. The local sensitivity is calculated as the difference of the total variance var(Y), to 
the variance when each of the corresponding random variables is evaluated at their mean with 
the other inputs remaining random (Eq. (3.1)) [45]. The greater the value of 2

iσ∆ , the greater the 
importance of Xi on Y. Note that X~i refers to being calculated over all random variables X, 
except Xi. The global sensitivity is expressed as main effect sensitivity index Si and total effect 
sensitivity index STi shown in Eqs. (3.2) and (3.3), respectively.21 The Si of a variable is another 
measure of the sensitivity of Xi on Y and STi provides information about the interaction of Xi with 
other variables. The sensitivities for the initial random inputs in Table 3.1 are shown in Table 
3.2. 

 
( ) ( )
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~2
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X i i i
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− =
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Table 3.2.  Local and global sensitivity for aerodynamic pressure and heat flux for the flat 

plate with initial uncertainty 

Input Variable ( ) 42
fpp

iσ∆  4
fpp

iS  4
fp

i

p
TS  ( ) 42

fpQ

iσ∆  4
fpQ

iS
 

4
fp

i

Q
TS

 
p1 (Pa) 0.686 0.684 0.680 0.020 0.016 0.016 

M1 0.333 0.319 0.319 0.122 0.174 0.175 
T1 (K) 0.0008 0.0002 0.0002 0.451 0.464 0.465 
Tw4 (K) - - - 0.340 0.344 0.344 

 
As expected, the temperatures play a small role in the 4

fpp  calculation; Tw4 does not appear in 
oblique shock relations and T1 is only used with Req to determine the methane-air properties. 
However, T1 and Tw4 are dominant in the heat flux calculation with 0.451 and 0.340, 
respectively. Furthermore, since the sum of the main effect indices Si is close to 1, individual 
values of the main effect indices Si and the total effect indices STi are so similar, it is indicated 
that there is not a strong interaction among variables. Table 3.3 shows the forward uncertainty 
propagation of the normal random variables from Table 3.1 to 4

fpp  and 4
fpQ . 
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Table 3.3.  Uncertainty propagation using initial uncertainty to pressure and heat flux for 
the flat plate 

Output Mean Coefficient of 
Variation 

 ( )4 Pafpp  1385.4 1.21% 

( )2
4 W cmfpQ  5.211 11.53% 

 
Observe that the 10% uncertainty in the temperatures (T1 and Tw4) play a larger role in the 

4
fpQ  calculation, therefore it has a larger CV at 11.53%. Since these experimental values are 

unknown and the distributions are assumed, it is beneficial to calibrate these uncertain model 
inputs. The next section uses Bayesian updating to calibrate the T1 and Tw4 distributions and 
quantify the model errors using a Bayesian network with the Glass and Hunt data. 

3.2 Bayesian Model Parameter Calibration 
There is significant epistemic uncertainty in the true values of T1 and Tw4, therefore Bayesian 

model parameter calibration can assist in better approximating these values based on 
observations. Furthermore, the errors in aerodynamic pressure and heat flux for the flat plate and 
spherical dome predictions can also be calibrated. First, as a brief introduction to Bayesian 
concepts, let ϕ  be the uncertain model parameters or errors in a model ( )x ϕ  with some prior 

information on the parameters’ uncertainty as a basis for a statistical distribution ( )π ϕ . Then 
using some observed data y, the distribution of the unknown parameters is updated using Bayes 
theorem, as shown in Eq. (3.4) [18]. 

 ( ) ( ) ( )
( ) ( )

Pr |
|

Pr |

y x
y

y x d

π
π

π

  =
  ∫

ϕ ϕ
ϕ

ϕ ϕ ϕ
 (3.4) 

Thus, this Bayesian updating reduces the uncertainty in the parameters ϕ , given observations 
y. In this case, the uncertain parameters are 

4 4 4 41 4, , , , ,fp fp sd sd
w p Q p QT T e e e e =  ϕ ; where, 

4 4 4 4
, , , andfp fp sd sd

p Q p Qe e e e  are the errors in the aerodynamic pressure and heat flux predictions for the 
flat plate and spherical dome specimens. The model error is defined as the difference between 
the model prediction and the true value, as shown in Eqs. (3.5) and (3.6) for the flat plate and 
spherical dome models, respectively. For this study, a systematic error in the predictions across 
the dome is assumed for convenience, as seen in Eq. (3.6). 

 
44 4true pred

fp fp fp
pp p e= +         

44 4true pred

fp fp fp
QQ Q e= +  (3.5) 

 ( ) ( ) 44 4true pred

sd sd sd
pi i

p p e= +         ( ) ( ) 44 4true pred

sd sd sd
Qi i

Q Q e= +  (3.6) 
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Building upon the relationship of the inputs and predictions, a Bayesian network of the 
measured inputs (p1 and M1), uncertain inputs (T1 and Tw4), model predictions (p4 and Q4), and 
model errors (

4pe and 
4Qe ) is constructed. Figure 3.1 depicts the Bayesian network for the 

aerodynamic pressure and heat flux predictions for the flat plate and spherical dome geometries 
and the interconnections between inputs, errors, and data. 

 

 
Figure 3.1.   Bayesian network for calibrating model inputs and errors using aerothermal 

data 

The gray nodes in Figure 3.1 are the uncertain inputs and errors that are being calibrated with the 
Glass and Hunt data. The dashed-box around the network represents the randomness in the 
measured inputs p1 and M1. Bayes theorem in Eq. (3.7) is rewritten for the case corresponding to 
the aerodynamic pressure and heat flux for the Glass and Hunt experiments in Eq. (3.7). 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

4 4 1 1

4 4 1 1

4 4 1 1

4 4 1 1

4 4 1 1

Pr , , , | , , ,
| , , ,

Pr , , , | , , ,
p Q p M

p Q p M
p Q p M

y y y y p Q p M
y y y y

y y y y p Q p M d

π
π

π

  =
  ∫

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ
 (3.7) 

In Eq. (3.7), uncertain inputs and errors are 
4 4 4 41 4, , , , ,fp fp sd sd

w p Q p QT T e e e e =  ϕ , data is available for 
4py  

and 
4Qy  from the flat plate and spherical dome measurements, as well as measured input data 

1py  
and 

1My (Table 3.1). Therefore, all four sources of data are incorporated in the likelihood 

function. Now that ϕ  and y are identified, we must now define the prior distributions ( )π ϕ . 
Normal distributions are used for uncertain inputs T1 and Tw4, with means from Culler et al.3 and 
10% coefficient of variation, as summarized in Table 3.1. Regarding model errors, observations 
from previous reports indicated that p4 and Q4 predictions are expected to be accurate within 
[-10%, 10%]+  and [-10%,-30%] , respectively [46]. The error bounds for Q4 are associated with 
Eckert’s reference temperature method, which is expected to consistently over-predict the true 
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value due to the calorically perfect gas assumption. However, after a preliminary comparison of 
predictions to data, a uniform distribution over the range [-30%, +30%] of the prediction was 
determined to be a more appropriate prior for all four error terms in this study. Therefore, this 
error model assumes uniform distributions based on the experimental means for the prior 
distribution of errors ( )π ϕ . Normal distributions are used for the likelihood function 

( )Pr |y x  ϕ , where the distribution parameters from Table 3.2 are assumed for 
1py  and 

1My , 
whereas 5% measurement uncertainty is assumed for aerodynamic pressure and heat flux 
measurements 

4py  and 
4Qy .  

Bayesian updating according to Eq. (3.7) is performed using all of the observed data from 
Glass and Hunt, except for Run 30 for the spherical dome. Run 30 data is reserved for validation, 
which is discussed in the following section. When performing the Bayesian updating, the 
freestream pressure p1, and Mach number M1, are also treated stochastically due to the 
measurement uncertainty presented in Table 3.2 with 1% CV. Equation (3.7) is evaluated at 100 
realizations of p1 and M1 using Latin Hypercube sampling. For each of those samples, a Markov 
Chain Monte Carlo (MCMC) algorithm called slice sampling is employed using 104 samples to 
calculate the posterior distribution. Figures 3.2 and 3.3 show the integrated posterior 
distributions for the uncertain inputs and errors 

4 4 4 41 4, , , , ,fp fp sd sd
w p Q p QT T e e e e =  ϕ . 

The mean and standard deviation of the posterior distributions for 

4 4 4 41 4, , , , ,fp fp sd sd
w p Q p QT T e e e e =  ϕ  are shown in Table 3.4. Comparing the initial and updated 

distributions of T1 and Tw4, it is seen that the uncertainty is reduced, however the mean value did 
not shift. This is primarily a result of the errors in p4 and Q4 predictions being more easily scaled 
as defined in Eqs. (3.5) and (3.6). Thus, calibrating the errors did result in a shift in the mean 
values, as seen in Figure 3.3. Also, there is significant uncertainty reduction in the errors from 
the initial 30%± .  

 

 
Figure 3.2.  Prior and posterior distributions for a) freestream temperature T1, and b) wall 

temperature Tw4 
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Figure 3.3.  Prior and posterior distributions for a) error in flat plate p4, b) error in flat 

plate Q4, c) error in spherical dome p4, and d) error in spherical dome Q4 

 
Table 3.4.  Mean, standard deviation, and coefficient of variation of calibrated model 

inputs and errors 

Output Mean Standard 
Deviation 

Coefficient 
of Variation 

T1 (K) 220.67 9.25 4.19% 
Tw4 (K) 300.34 28.24 9.40% 

( )
4

Pafp
pe  -108.87 (-8.5%) 40.36 37.07% 

( )2
4

W
cm

fp
Qe  -4707.0 (-10.0%) 280.2 5.95% 

( )
4

Pasd
pe  -75.84 (-5.0%) 21.28 28.06% 

( )2
4

W
cm

sd
Qe  -4682.6 (-7.5%) 247.8 5.29% 

 
The calibrated distributions for T1 and Tw4 are propagated to 4

fpp  and 4
fpQ  in Table 3.5. The 

uncertainty in aerodynamic pressure is unchanged since it is insensitive to freestream 
temperature. However, the uncertainty in 4

fpQ  is reduced from 11.53% to 6.46%.  
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Table 3.5.  Uncertainty propagation using updated uncertainty to pressure and heat flux 
for the flat plate 

Output Mean Coefficient of 
Variation 

( )4 Pafpp  1385.4 1.23% 

( )2
4 W cmfpQ  5.229 6.46% 

 
The next section investigates the effect of quantifying the model errors in the predictions for 

the spherical dome and uses the remaining set of data (Run 30) for assessing the confidence in 
4
sdp  and 4

sdQ  predictions. 

3.3 Assessing Prediction Confidence for Model Validation 
The aerodynamic pressure and heat flux along the spherical dome is evaluated at the initial 

and updated values of 
4 41 4, , ,sd sd

w p QT T e e =  ϕ  from Table 3.6. Figures 3.4 and 3.5 show the 
experimental data from Glass and Hunt (Runs 30, 31, and 32), along with the initial and updated 
model predictions 4

sdp  and 4
sdQ  evaluated at the mean along the streamwise centerline of the 

spherical domes. Tables 3.6 and 3.7 summarize the deterministic errors in the predictions. As 
illustrated in Figures 3.4 and 3.5, aerodynamic pressure and heating are greatest near the leading 
edge of the dome and lowest near the trailing edge. This is a result of the slope of the dome in the 
flow direction, where positive slope results in elevated values and negative slope produces lower 
values relative to the flat plate. Thus, the largest dome (Run 30) produces the greatest spatial 
variations in pressure and heating. Note that the slope of each dome is zero at x/D=0.5. At this 
location, pressure and heating values are nearly identical for each dome and for the flat plate, 
which indicates that local surface inclination has a strong impact on local pressure and heating 
values. 

 
Figure 3.4.  Aerodynamic pressure along centerline of spherical dome for Runs 30, 31, and 

32 from test data, initial mean input values, and Bayesian updated mean input values 
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Table 3.6.  Error summary for nominal pressure predictions along centerline of spherical 
dome 

 Initial Errors in 4
sdp  Updated Errors in 4

sdp  
 Run 30 Run 31 Run 32 Run 30 Run 31 Run 32 

Average 13.6% 8.2% 6.7% 16.0% 8.3% 2.7% 
Maximum 39.3% 23.5% 14.2% 35.4% 18.5% 8.9% 

 
From Figure 3.4 and Table 3.6 it is evident that 3rd-order piston theory predictions of 4

sdp
become less accurate with increasing dome surface inclination. Accordingly, the largest error in 

4
sdp  occurs at the forward-most location in Run 30. Recall that Run 30 was saved for validation 

and only Runs 31 and 32 were included in calibration. This generally resulted in smaller errors 
for Runs 31 and 32, but errors for Run 30 increased, as summarized in Table 3.6. It is expected 
that if data from Run 30 had been included in calibration, then the corresponding errors would 
have also been reduced. Furthermore, since the errors in 4

sdp  along the dome vary in magnitude 
spatially, it would be beneficial to use a more flexible error model, such as a Gaussian process 
model, in more practical applications. 

Figure 3.5 and Table 3.7 show that Eckert’s reference temperature method predicted 4
sdQ  

more accurately than 3rd-order piston theory predicted 4
sdp . Again, the trend is observed that 

errors are reduced using the updated ϕ  values for Runs 31 and 32, but not Run 30. This may be 
expected since values of 

4

sd
Qy  from Runs 31 and 32 are included in the Bayesian calibration, 

whereas values from Run 30 were not used. 
 

 
Figure 3.5.  Aerodynamic heat flux along centerline of spherical dome for Runs 30, 31, and 

32 from experimental data, initial mean input values, and Bayesian updated mean input 
values 
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Table 3.7.  Errors for nominal heat flux predictions along centerline of spherical dome 
 Initial Errors - 4

sdQ  Updated Errors - 4
sdQ  

 Run 30 Run 31 Run 32 Run 30 Run 31 Run 32 
Average 3.9% 6.2% 12.8% 11.7% 4.1% 3.6% 

Maximum 12.9% 10.4% 21.2% 24.7% 8.7% 12.4% 
 
The deterministic errors are useful for assessing the accuracy of the nominal model 

predictions, however this is a stochastic problem and error alone does not provide a statistical 
assessment of the confidence in the model prediction. Therefore, the most important step in this 
model uncertainty framework is to validate the models by assessing the confidence. This enables 
decision-making in regard to model development and fidelity selection. For the Aircraft Digital 
Twin, it is important to have this confidence metric to make autonomous decision making 
possible for efficient simulations and risk mitigation. 

Several validation metrics exist with advantages and disadvantages, such as classical 
hypothesis testing, and difference and area metrics; however Bayesian hypothesis testing is 
selected for this study [47,48]. The Bayes factor approach fits appropriately with the Bayesian 
network integration framework, but its main advantages are that it takes into account the entire 
probability distribution of the model output and its relation to a confidence metric is 
straightforward. For Bayesian hypothesis testing, we want to determine the probability of our 
model being correct, given some observed data. Consider a hypothesis test to determine the 
probability that a model prediction x is equal to its true value x0. Equation (3.8) calculates the 
Bayes factor B, as the ratio of likelihoods corresponding to the null hypothesis (model prediction 
is equal to the true value) and the alternate hypothesis (model prediction is not equal to the true 
value). Therefore, when B > 1, the data supports the null hypothesis better than the alternative 
hypothesis. The integral form of the Bayes factor in Eq. (3.8) includes the likelihood function of 
the data supporting the prediction Pr(y|x), the probability density function (PDF) of the model 
prediction ( )0 xπ , and the PDF for the alternative hypothesis ( )1 xπ . 

 ( ) ( )
( )

( ) ( )
( ) ( )

00 0
0

1 0 1

Pr |Pr | :
Pr | : Pr |

y x x dxy H x x
B x

y H x x y x x dx

π

π
=

= =
≠

∫
∫

 (3.8) 

Equation (3.8) is rewritten in Eqs. (3.9) and (3.10) for the cases for aerodynamic pressure and 
heat flux, where i = 1 to 11 for the x-location across the dome. 

 ( ) ( ) ( )
( ) ( )

4

0

4

4 0 4 4

4

4 1 4 4

Pr |

Pr |

sd i i ii

i

sd i i ii

sd sd sd
psd

sd sd sd
p

y p p dp
B p

y p p dp

π

π
=

∫
∫

 (3.9) 

 ( ) ( ) ( )
( ) ( )

4

0

4

4 0 4 4

4

4 1 4 4

Pr |

Pr |

sd i i ii

i

sd i i ii

sd sd sd
Qsd

sd sd sd
Q

y Q Q dQ
B Q

y Q Q dQ

π

π
=

∫
∫

 (3.10) 
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The Bayes factor is calculated at each of the 11 points along the spherical dome used in Run 30 
of the Glass and Hunt study. The likelihood function Pr(y|x) is based on the assumption of a 
normal distribution for measurement error, with a standard deviation based on 5% coefficient of 
variation on the mean of the pressure and heat flux data for Run 30 ( ( ),0.05iN y y ). The 

probability density function for the null hypothesis ( )0 xπ , is determined by propagating the 

uncertainty in p1, M1, T1, and Tw4, as well as the quantified errors for the spherical dome (
4

sd
pe  and 

4

sd
Qe ). The PDF for the alternative hypothesis ( )1 xπ , is modeled as a uniform distribution 

extending beyond the maximum and minimum values of 4
sdp  and 4

sdQ  predictions. 
The Bayes factors computed in Eqs. (3.9) and (3.10) can be used to the confidence C, in the 

prediction, as shown in Eq. (3.11).25 

 ( )0 |
1

BC P H y
B

= =
+

 (3.11) 

As indicated in Eq. (3.11), C is simply the posterior probability of the null hypothesis being true, 
given the observation data (under the assumption that prior probabilities of the null and 
alternative hypotheses are both 0.5). For a Bayes factor of 1.0, the confidence C, is equal to 50%. 
This implies that we do not have enough evidence to reject or accept the null hypothesis. 
However, for Bayes factors greater than 1.0 (as explained for Eq. (3.8)), we would have 
increasing confidence that the prediction is equal to the true value. The confidence metric can be 
used as a resource allocation measure for determining when it is beneficial to perform tests, 
where higher fidelity models are required, and which disciplines need a more strongly (or less 
strongly) coupled solution procedure. In addition, the Bayes factor-based confidence can be used 
to assess the limits of the model’s predictions. Table 3.8 summarizes the confidence (Eqs. (3.9)-
(3.11)) and deterministic error in 4

sdp  and 4
sdQ  predictions for the 11 observations from Run 30 (

4
sd

ip
y  and 

4
sd
iQ

y ). 

Table 3.8.  Error and confidence in aerodynamic pressure and heat flux predictions along 
centerline of spherical dome for Run 30 

Location x/D 
%error 

4
sdp  4

sd
ip

C  %error 
4
sdQ  4

sd
iQ

C  

1 0.11 -35.4% 0.00% 2.5% 86.7% 
2 0.19 -21.0% 0.02% 2.8% 87.5% 
3 0.26 -9.3% 71.1% 3.9% 87.7% 
4 0.34 -3.9% 94.0% 4.4% 88.6% 
5 0.42 2.4% 94.6% 8.4% 85.1% 
6 0.50 7.0% 88.7% 9.7% 85.0% 
7 0.58 11.3% 74.8% 14.5% 74.1% 
8 0.66 15.3% 54.9% 21.3% 36.1% 
9 0.74 21.4% 16.4% 24.7% 25.0% 
10 0.81 23.7% 21.7% 17.1% 81.8% 
11 0.89 25.9% 30.2% 19.7% 81.5% 
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The majority of the predictions have greater than 50% confidence, which means the data 
supports the prediction. Pressure predictions at locations 4-6 have the highest confidence. The 
confidence in 4

sdQ  predictions using Eckert’s reference temperature method are all above 80%, 
with the exception of locations 7-9. As mentioned for Figure 3.4, the largest error in the 4

sdp  
occurs at the front of the dome, which corresponds to 0% confidence. The deterministic errors 
give an indication of the quality of the nominal predictions, however note that it is not always 
indicative of the statistical confidence in the predicted values. For example, 2.4% error at 
location 5 for 4

sdp  corresponds to 94.6% confidence, but 2.5% error at location 1 for 4
sdQ  is 

lower at 86.7% confidence. This is the result of differences in the shape of the model error 
distributions for 4

sdp  and 4
sdQ .  

The scope of this work is to initiate a framework for assessing the confidence in coupled 
aerothermoelastic model predictions, not to necessarily draw definitive conclusions for these 
particular aerodynamic models. However, given the confidence associated with the 4

sdp  
predictions for Run 30 (H/D = 0.028), one would likely conclude that 3rd-order piston theory is 
inadequate for predicting the aerodynamic pressure on a spherical dome protuberance of this 
size. Although, to truly reach that conclusion, more thorough uncertainty quantification is 
required to better capture the model error. 

The final section builds upon the conclusions using the Bayes factor-based confidence and 
uses that metric to compare predictions using different forms of piston theory. 

3.4 Model Selection from Prediction Confidence Metric 
The Bayes factor-based confidence metric is also useful for model selection. Up to this point, 

a 3rd-order expansion of piston theory from Eq. (2.5) was used to predict 4
sdp . Naturally, 1st- and 

2nd-order expansions could have been used instead. Consider 1st- and 2nd-order piston theories for 
a model selection study, as shown in Eqs. (3.12) and (3.13), respectively. 

 3
4 3

3 3

12sd q w wp p
M U t x

 ∂ ∂
= + + ∂ ∂ 

 (3.12) 

 
2

3
4 3 3

3 3 3

1 1 12
4

sd q w w w wp p M
M U t x U t x

γ    ∂ ∂ + ∂ ∂ = + + + +   ∂ ∂ ∂ ∂     
 (3.13) 

Figures 3.6 and 3.7 show the 4
sdp  and 4

sdQ  predictions for Run 30 using 1st-, 2nd-, and 3rd-
order piston theories. Recall that Eckert’s reference temperature method uses the 4

sdp  predictions 
from piston theory, so 4

sdQ  is also affected. 
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Figure 3.6.  Aerodynamic pressure predictions for Run 30 using 1st-,2nd-, and 3rd-order 

piston theory 

 
Figure 3.7.  Aerodynamic heat flux predictions for Run 30 using 1st-,2nd-, and 3rd-order 

piston theory 
Comparing the different piston theories, both 2nd- and 3rd-order capture some of the 

nonlinearity in 4
sdp  and 4

sdQ and give relatively similar predictions. First-order piston theory 
appears to give a more accurate prediction at the front of the dome for 4

sdp , however the aft 
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portion has larger errors than 2nd- and 3rd-order. Furthermore, the 1st-order expansion decreases 
the overall accuracy over the entire dome for heat flux predictions.  

Table 3.9 shows the Bayesian hypothesis testing-based confidence metric for 4
sdp  and 4

sdQ  
using 1st-, 2nd-, and 3rd-order piston theory. As expected from Figure 3.7, 1st-order piston theory 
has higher confidence at the front of the pressure dome, but is significantly lower when 
compared to 2nd- and 3rd-order predictions along the centerline of the dome. When comparing the 
confidence in 2nd- and 3rd-order 4

sdp  and 4
sdQ , not only are the two predictions very similar, but 

the confidence in the 2nd-order model is actually higher at locations 8-11. Therefore, not only 
would a lower-order model theoretically require lower computational costs, but it is statistically 
more representative of observations along the dome for Run 30. 

 
Table 3.9.  Confidence in aerodynamic pressure and heat flux predictions using 1st-, 2nd-, 

and 3rd-order piston theory along centerline of spherical dome for Run 30 

Location x/D 4
sd

ip
C  

4
sd
iQ

C  

1st-order 2nd-order 3rd-order 1st-order 2nd-order 3rd-order 
1 0.11 0.36% 0.00% 0.00% 31.5% 84.8% 86.7% 
2 0.19 63.1% 0.09% 0.02% 62.2% 86.7% 87.5% 
3 0.26 94.4% 75.6% 71.1% 77.8% 87.5% 87.7% 
4 0.34 95.4% 94.0% 94.0% 85.7% 88.5% 88.6% 
5 0.42 94.2% 94.7% 94.6% 83.8% 85.2% 85.1% 
6 0.50 89.0% 89.1% 88.7% 84.7% 85.0% 85.0% 
7 0.58 68.6% 74.9% 74.8% 69.3% 73.8% 74.1% 
8 0.66 20.3% 57.1% 54.9% 10.6% 38.3% 36.1% 
9 0.74 0.16% 23.3% 16.4% 0.25% 35.0% 25.0% 
10 0.81 0.00% 42.7% 21.7% 0.23% 88.8% 81.8% 
11 0.89 0.00% 69.0% 30.2% 0.00% 92.0% 81.5% 

3.5 Summary 
A framework to quantify the model error and assess the confidence in model predictions for a 

coupled aerothermoelastic panel is outlined. Bayesian model calibration, error quantification, 
and prediction confidence assessment procedures are described for aerothermal models with data 
available from tests performed in a High-Temperature Tunnel on spherical dome protuberances 
subjected to hypersonic flow. The models include 3rd-order expansion of piston theory and 
Eckert’s reference temperature method to predict aerodynamic pressure and heat flux, 
respectively. This research aims to logically and optimally use the limited data available for 
model validation and decision-making. The freestream and wall temperatures are assumed since 
their values were not reported in the experiments. Bayesian calibration is employed to update the 
uncertain inputs and quantify errors associated with aerodynamic pressure and heat flux 
predictions. The calibrated input distributions and quantified model errors are used to update the 
model predictions along the centerline of a spherical dome specimen. The information on the 
model error is used to calculate the Bayesian hypothesis testing-based confidence to enable 
model validation and model selection for this aerothermal problem. For this model selection 
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study among piston theories, it was observed that the highest-order model (3rd-order) did not 
result in the highest prediction confidence metric.  
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4 SEGMENTED BAYESIAN MODEL CALIBRATION OF AEROTHERMAL 
MODELS 

Bayesian updating procedures require many evaluations of the models in the Bayesian 
network, which can be computationally intensive. Most Bayesian calibration work has been done 
with a single model or multiple models sharing common calibration parameters. Traditionally, as 
additional experimental data becomes available corresponding to a particular model prediction, 
recalibration is performed over the entire network. However, for a complex system of models, 
such as coupled aerothermoelastic response, it becomes imperative to assess the necessity of 
recalibrating these models simultaneously over the entire network in contrast to updating only 
the nodes affected by the new data in an isolated, or segmented, manner. In the case of the 
Bayesian network in this research, it is possible to use the data at the individual nodes to update 
only the statistically relevant parameters at that node. Thus, a segmented Bayesian model 
calibration is investigated as a simplified alternative to calibrating all of the models in the 
complex system simultaneously.  

4.1 Bayesian Model Calibration Methodology 
In this section, the framework to calibrate uncertain model inputs, model discrepancy, and 

measurement errors based on the observed values of aerodynamic pressure and heating is 
presented.  

Consider Bayesian calibration of a general model η(ϕ), which contains an uncertain 
parameters ϕ, with assumed prior distributions π(ϕ), based on prior experience, expert opinion, 
or historical data. With the observed data y, the distribution of the unknown parameters is 
updated using Bayes' theorem in Eq. (4.1) . 

 [ | ( )] ( )( | )
[ | ( )] ( )

Pr yy
Pr y d

η ππ
η π

=
∫

φ φφ
φ φ φ

  (4.1) 

Thus, Bayesian updating reduces the uncertainty in parameters ϕ given observations y. Bayes’ 
theorem is rewritten for the aerodynamic pressure and heat flux predictions and Glass and Hunt 
experiments in Eq. (4.2). 

 p Q OS PT ERT
p Q

p Q OS PT ERT

[ , | ( ), ( ), ( )] ( )
( | ,

[ , | ( ), ( ), ( )] )
)

(
Pr y y p p Q

y y
Pr y y p p Q d

π
π

π
=

∫
φ φ φ φ

φ
φ φ φ φ φ

  (4.2)   

The Bayesian network for Eq. (4.2) is constructed using the model and data relationships of 
the aerothermal models presented in Section 2.1. As previously mentioned, oblique shock 
relations predict p3 at the leading edge of the test specimen (i.e. flat plate or dome protuberance). 
For the flat plate, the pressure across the panel is the same as the leading edge pressure, therefore

3 4
fp fpp p= . Thus, the flat plate pressure data can be directly applied to the oblique shock 

prediction such that fp
py = pOS(ϕ) + εOS + )(0,

pyN σ . This isolates the known relationship of the 
oblique shock prediction to the flat plate, reserving the rigid dome data to calibrate other 
components of the aerothermal model. Similarly, piston theory and Eckert’s reference 
temperature models can be related to Glass and Hunt data. In effect, pressure data across the 
spherical dome ( )p

sdy  is applied to calibrate the model discrepancy associated with piston theory 

(εPT) and heat flux data ( p
Q
fy , )sd

Qy  is used to calibrate the discrepancy associated with Eckert's 
reference temperature method (εERT ). Note that this description of separating the models and 
data is used to motivate and explain the segmented calibration approach, however simultaneous 
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calibration combines all of the model predictions and data into a single calculation. The 
segmented model calibration procedure is further discussed in the next section. 

Figure 4.1 shows the Bayesian network and the relationships between the aerodynamic 
pressure and heat flux model predictions (p3, p4, Q4), Glass and Hunt data ( fp

py , sd
py , fp

Qy , sd
py ), 

model inputs (p1, M1) and uncertain model inputs (T1, Tw ), measurement errors (
pyε ,

Qyε ), and 
discrepancy terms for calibration (εOS, εPT, εERT).  

 
Figure 4.1. Bayesian Network for Glass and Hunt experiments 

Recall p4 prediction from piston theory is a function of the oblique shock results p3 in Eq. (2.5). 
It is then essential to consider the propagation of the error in oblique shock εOS in the p4 
calculation as shown in Figure 4.1. Similarly, Eckert's reference temperature uses the T4 obtained 
from isentropic relations with p4, warranting the passing of εPT to the heat flux model. 

4.2 Model Discrepancy Formulation 
The calibration framework followed in this study is based on the Kennedy and O'Hagan 

discrepancy function [21]. This framework has the capacity to account for the relevant sources of 
uncertainty identified in this study and include them in the calibration. Their combined form is: 

 ( , ) ( )y η δ= + +φ εx x   (4.3) 

where, η is the model under consideration, ϕ are the parameters being calibrated, δ is the model 
inadequacy function evaluated at a specific inputs x and )(0,N�ε s is the measurement 
uncertainty associated with that set of data. In line with the discussion of relevant sources of 
uncertainty (i.e. data uncertainty, input parameter uncertainty, input-specific model inadequacy) 
the parameters calibrated using the Glass and Hunt hypersonic wind tunnel data are listed in Eq. 
(4.4). 

 1 OS PT ERT, , , , , ,
p Qyw yT T ε ε ε ε ε =  φ   (4.4) 

where εOS, εPT, and εERT are discrepancy models for oblique shock relations, piston theory, and 
Eckert’s reference temperature method, respectively. The measurement errors 

pyε and
Qyε reflect 

26 
Approved for public release; distribution unlimited. 

 



the uncertainty in aerodynamic pressure and heating observations (yp and yQ) observations, 
respectively. 

In a related study by Smarslok et al. [23], systematic error models were chosen to represent 
the inadequacy in the aerodynamic pressure and heat flux predictions. It was observed that these 
error models were not fully sufficient to predict the Glass and Hunt data with reasonable 
confidence across the dome. Thus, a higher order model for discrepancy is investigated for piston 
theory and Eckert’s reference temperature predictions. 

Figures 4.2 and 4.3 show the nominal aerothermal model predictions compared to Glass and 
Hunt data for Runs 30, 31, and 32. The nominal values of T1 and Tw are 220 K and 300 K, 
respectively. 

 

 
Figure 4.2. Aerodynamic pressure predictions across dome at nominal input values 

 
Figure 4.3. Aerodynamic heat flux predictions across dome at nominal input values 

  

27 
Approved for public release; distribution unlimited. 

 



28 
Approved for public release; distribution unlimited. 

 

Table 4.1. Errors at nominal aerothermal model predictions and Glass and Hunt data 

Prediction Run 
Maximum

Error
Maximum  
% Error 

Aerodynamic 
Pressure 

Run 
30 

1149 59.3% 

 
Run 
31 

522 34.1% 

 
Run 
32 

253 17.8% 

Aerodynamic Heat 
Flux 

Run 
30 

-6549 -14.7% 

 
Run 
31 

9557 15.2% 

 
Run 
32 

8210 15.3% 

 

Recalling that piston theory (Eq.(2.5)) is a function of slope (∂w/∂x) and the pressure 
prediction error is proportional to the dome slope, we consider discrepancy models for piston 
theory and Eckert's reference temperature that are also functions of slope. In adherence to the 
Kennedy and O’Hagan framework, the uncertain parameters in Eq. (4.4)  have been revised to 
reflect the slope dependency of εPT and εERT in Eqs. (4.5) and (4.6), respectively. 

 PT PT PT 2
PT 0 1 2 ( )

w w
b b b

x x
  

  
 

  (4.5) 

 ERT ERT ERT 2
ERT 0 1 2 ( )

w w
c c c

x x
  

  
 

  (4.6) 

Quadratic models are chosen to represent the relationship between spherical dome slope and 
p4 and Q4 prediction discrepancies, where the quadratic coefficients are calibrated. Also, defining 
measurement variability as (0, )

p py yN  and (0, )
Q Qy yN  , the final form of the calibration 

parameters is presented in Eq. (4.7).  

    PT ERT
1 OS PT ERT, , , | , | , ,

p p Q Qyw y y y

w w
T T

x x
                       

b c   (4.7) 

4.3 Uncertain Inputs, Discrepancy Parameters, and Measurement Variability 
In this study, normal prior distributions are used for uncertain inputs 1T  and wT  with mean 

values from Culler et al. [9] and 10% coefficient of variation assumed by Smarslok et al. [23], as 
shown in Table 4.2. The measurement uncertainty terms are assumed to have lognormal prior 
distributions (due to the requirement they always be positive), with log-means of around 5% of 
the mean values of sd

py and sd
Qy . Regarding model discrepancy terms, uniform distributions are 

~ ~



assumed with bounds shown in. These bounds were obtained by propagating model input and 
data uncertainty through the network to determine sufficient ranges for the parameters. 
 

Table 4.2. Prior Distributions for Uncertain Input Parameters 

Parameter Normal µ  CV 
T1 (K) 220 10% 
Tw (K) 300 10% 

 Lognormal 
µ  

Lognormal 
σ  

pyσ   4.20 0.17 

Qyσ   7.81 0.24 

 Lower 
Bound 

Upper 
Bound 

OS(Pa)ε  -330 330 
PT
0 (Pa)b  -200 200 
PT

1 (Pa)b  -10000 0 
T

2
P (Pa)b  -100000 30000 

2
0
ERT (W/m )c  -20000 20000 

2
1
ERT (W/m )c  0 300000 

2
2
ERT (W/m )c  2000000 5000000 

 

4.4 Problem Evaluation for Implementation of Segmented and Simultaneous Calibration 
Strategies 

For the aerothermal Bayesian network in Figure 4.1, the subdivision of Glass and Hunt data 
and its application to specific aerothermal models is the first critical step to warrant a similarly 
segmented calibration procedure. Intuition and practicality of segmented calibration, along with 
projected computational savings, prompts the investigation of its viability in this section.  

In order to implement the segmented calibration strategy, it is important to discern which 
uncertain variables make significant contributions to the overall uncertainty in the each model 
output. To accomplish this, a global stochastic sensitivity analysis is performed. Global 
sensitivity analysis is based on the variance decomposition theorem stated below in Eq. (4.8). 
This simply states that the variance in a model output Y  can be decomposed into: 1) the variance 
of the expected values of Y conditioned on a fixed input quantity (Xi) and all other calibration 
quantities (X-i) allowed to vary; and 2) the expected value of the variance of Y conditioned on the 
same set [45,49].  

 ( ) ( ( | )) ( ( | ))i iV Y V E Y X E V Y X= +    (4.8) 

In Eq. (4.8), V(Y) is computed by evaluating the total variance of the model output 
considering uncertainty in all parameters. The total effects of a parameters uncertainty contain 
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the interactions between the ith parameter and the other parameters. The interaction between 
parameters further induces uncertainty in the output, thus a parameter's total effects are essential 
to gain insight into the total significance of its uncertainty. The total effects are computed from 
Eq. (4.9). For piston theory and heat flux prediction sensitivities to the uncertain parameters 
across the dome, an average total sensitivity value is reported in Tables 4.3-4.5. 

 
( ( |

1
)

))
(

i i
i

i X X
T

E V Y X
S

V Y
−

−

= −    (4.9) 

The total effect sensitivities are computed in a double nested loop and are computationally 
demanding when calculating heat flux prompting the construction of a linear regression surrogate 
model of Eckert's reference temperature. Although some accuracy in the sensitivity calculation 
was lost, the effects were minimal and the computational cost was greatly reduced. The surrogate 
heat flux model used for sensitivity analysis can be found in Eq. (4.10), where T

iQ = [1, pi, Ti, Mi, 
Tw] and i is the location along the dome. Coefficients corresponding to each heat flux prediction 
point along the dome bi were found using least-squares regression with 200 training points. The 
average R2 value over the dome for the Eckert’s reference temperature surrogate model was 
0.998. 

 T
i i iQ = Q b   (4.10) 

Tables 4.3-4.5 show the total effect sensitivities using the prior distributions for each of the 
uncertain parameters and errors for the models. 

 
Table 4.3. Oblique shock (p3) sensitivities to prior distributions 

Parameter T,OS
iS   

T1 (K) 1.5e-3 
εOS (Pa) 0.999 

 
Table 4.4. Piston theory (p4) sensitivities to prior distributions 

Parameter T,PT
iS  

T1 (K) 1.5e-3 
εOS (Pa) 0.685 
εPT (Pa) 0.310 
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Table 4.5. Eckert's reference temperature (Q4) sensitivities to prior distributions 

Parameter T,ERT
iS  

T1 (K) 0.075 
Tw (K) 0.007 
εOS (Pa) 0.547 
εPT (Pa) 0.045 
εERT (W/m2) 0.333 

 
From these sensitivities, we can gauge the effectiveness of calibrating a particular parameter 

with a particular segmented model and data set. For example, in Table 4.3, the oblique shock and 
piston theory models are insensitive to 1T . Therefore, we would not expect observations of fp

py

and d
p
sy to inform us about the true value of T1. It is also expected that due to the low sensitivity 

of all models to the prior distributions of T1 and Tw compared to the model errors, the posterior 
distributions of uncertain input parameters are not expected to update as much as those for the 
discrepancy parameters. The segmented calibration procedure will be conducted in recognition 
of these sensitivities as follows: 

pyσ will be paired with the piston theory for calibration, and T1, 

Tw, and 
Qyσ with Eckert’s reference temperature model.  

4.5 Simultaneous and Segmented Calibration Results 
Simultaneous and segmented Bayesian model calibrations were conducted as detailed in the 

previous section and indicated in Figure 4.3. For simultaneous calibration, 150,000 samples were 
generated using slice sampling18. Similarly, for segmented calibration 100,000 samples were 
generated for each segment. The posterior distributions of the calibration parameters (model 
inputs, discrepancy parameters, and measurement errors) are shown in Figures 4.4-4.6. 

 

 
Figure 4.4. Prior and posterior distributions for a) freestream temperature and b) wall 

temperature 
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Figure 4.5. Prior and posterior distributions for (a) oblique shock error, (b)-(d) piston 

theory error and, (e)-(g) Eckert's reference temperature error 

 
Figure 4.6. Prior and posterior distributions for (a) pressure and (b) heat flux 

measurement error 
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In Figures 4.4-4.6, simultaneous and segmented calibrations produce similar marginal posterior 
distributions; the differences will be quantified in the next section with Bayesian hypothesis 
testing. The posteriors of the uncertain inputs (T1 and Tw) do not differ much from the prior 
distributions, which was expected due to the low sensitivities to those parameters addressed in 
Table 4.3. However, the posteriors of the discrepancy model parameters and measurement errors 
updated significantly from the priors with both simultaneous and segmented calibration.  

Preceding the calibration, the sensitivities to the prior parameter distributions were presented 
in Table 4.2. The posterior sensitivities are shown in Tables 4.6-4.8 where it can be seen that the 
sensitivity to εOS has decreased in piston theory and Eckert’s reference temperature calculations 
and is transferred to the sensitivity in εPT and εERT, respectively. Also, because of the reduced 
uncertainty in the discrepancy parameters, the Eckert’s reference temperature model becomes 
more sensitive to T1, however low sensitivity persists for Tw. The lack of substantial updating for 
Tw is in agreement with results from Smarslok et al. [23]. 

 
Table 4.6.  Oblique shock (p3) sensitivities to simultaneous calibration posterior 

distributions 

Parameter T,OS
iS   

T1 (K) 0.005 
εOS (Pa) 0.998 

 
Table 4.7.  Piston theory (p4) sensitivities to simultaneous calibration posterior distributions 

Parameter T,PT
iS  

T1 (K) 0.007 
εOS (Pa) 0.397 
εPT (Pa) 0.606 

 
Table 4.8.  Eckert's reference temperature (Q4) sensitivities to simultaneous calibration 

posterior distributions 

Parameter T,ERT
iS  

T1 (K) 0.315 
Tw (K) 0.040 
εOS (Pa) 0.144 
εPT (Pa) 0.010 
εERT (W/m2) 0.471 

 

4.6 Comparison of Calibration Strategies 
To assess the effectiveness of the segmented calibration methodology compared to the 

simultaneous procedure, it is necessary to specify the comparison criteria. As previously stated, 
the purpose of this study is to explore the computational effort and accuracy of segmented and 
simultaneous calibration methods. Computational effort is gauged by the rates of convergence 
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between the two procedures, and accuracy is determined by the resulting posterior distributions’ 
comparative ability to predict Run 30 of the Glass and Hunt data, which is calculated using 
Bayesian hypothesis testing. Recall that the calibration was performed using Runs 31 and 32, 
which have lower H/D ratios than the Run 30 data, thus making it an extrapolation case for 
validation. 

Calibration convergence rates are computed using Kullback-Leibler (K-L) distance [50], 
presented in Eq. (4.11). This metric compares the final posterior distribution obtained from the 
calibration, π0(ϕ), with the distribution at the ith sample, πi(ϕ). Convergence is tested at every 
1,000 sample points and is reached when DKL,i ≤ 0.01. The number of samples at which the 
simultaneous and segmented procedures reached convergence is presented in Table 4.9. 

 0
, 0 0

( )( || ) ( ) log
( )d

KL i i
i

D dππ π π
π

= ≥∫
�

0ff f
f

  (4.11) 

Table 4.9. Segmented and Simultaneous Calibration Samples to Convergence 

Procedure Model Samples 
Simultaneous All 73,000 
Segmented Oblique Shock 15,000 
 Piston Theory 25,000 

 Eckert’s Ref. 
Temp. 55,000 

 
Table 4.9 shows that in order to obtain convergence in simultaneous calibration, all three 

models must be evaluated 73,000 times. Whereas, for segmented calibration to obtain 
convergence according to K-L distance, 15, 25, and 55 thousand samples were required for 
oblique shock, piston theory, and Eckert’s reference temperature method, respectively. The 
computational savings by calibrating with the segmented approach is from individual models not 
needing to be executed as many times to converge. However, the actual savings from segmented 
calibration is model dependent and not fully quantified in this study. 

In Bayesian hypothesis testing, we compute the likelihood ratio of two competing models 
given observed data. Equation (4.12) calculates this ratio of likelihoods corresponding to the null 
hypothesis (segmented calibrated parameters ϕ0 with joint probability distribution π0 are equal to 
the true value) and the alternate hypothesis (simultaneous calibrated parameters ϕ1 with joint 
probability distribution π1 are equal to the true value). Therefore, when B(xi) = 1 the segmented 
calibration prediction has the same likelihood of occurring as the simultaneous calibration 
prediction at the data location xi. The integral form in Eq. (4.12) includes the likelihood function 
of the data supporting the prediction Pr(y|ϕ) the probability density function (PDF) of the null 
hypothesis π0(ϕ0) and alternative hypothesis π1(ϕ1). 

 
1 1
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1 1
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First, Bayesian hypothesis testing was performed separately using flat plate pressure data, 
spherical dome pressure data, and heat flux data to gauge how well segmented calibration 
performed for each model. Then, a Bayes factor was computed using all models and data to 
obtain a combined assessment of segmented calibration. Bayes factors were obtained at each 
dome location, of which the average, minimum, and maximum are reported for piston theory and 
Eckert’s reference temperature predictions across the dome. The trends of these individual Bayes 
factors are values lower than one on the outer dome edges and greater than one closer to the 
center. Figures 4.7-4.8 show that while the mean predictions are very similar, the uncertainty in 
the prediction close to the dome center using the segmented posterior distribution is much larger 
than the uncertainty using simultaneous posteriors, and thus has higher likelihood of containing 
the data. This accounts for the Bayes factors favoring segmented calibration for predictions near 
the center of the dome. The results are reported in Table 4.10.  

 
Table 4.10. Bayes Factors for segmented and simultaneous calibration 

Model Minimum Maximum Average 
Oblique Shock - - 0.96 
Piston Theory 0.77 1.19 0.92 
Eckert’s Ref. 
Temp. 0.84 1.08 0.94 

Combined 0.81 1.89 1.15 
 

 
Figure 4.7. Pressure predictions across dome from posterior distributions 
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Figure 4.8. Heat flux predictions across dome from posterior distributions 

Table 4.11. Errors in calibrated aerothermal model predictions and Glass and Hunt data 

Prediction Maximum 
Error 

Maximum 
% Error 

Aerodynamic 
Pressure 

-191 -10.4% 

Aerodynamic Heating -12493 -13.1% 
 
Table 4.11 shows the effect of the calibration on the errors in the pressure and heating 

prediction compared to the Glass and Hunt data. The maximum percent error in the nominal 
aerodynamic pressure prediction across the dome for Run 30 is 59.3% which decreased to -
10.4% with the calibrated models. Similarly, while the magnitude of the maximum heat flux 
error for Run 30 increased, the maximum percent error in the heat flux prediction decreased to -
13.1% from -14.7% at the nominal prediction. 

Another explanation for the differences between predictions using segmented and 
simultaneous calibration posteriors is that segmented calibration ignores correlation between 
model error parameters. These correlations are significant in the simultaneous posterior samples 
and are listed in Table 4.12. For example, when εOS is small the first term in εPT is large in the 
simultaneous posterior samples. However, for predictions from the segmented calibration 
posteriors, we select samples of εOS, εPT , and εERT independently, resulting in a larger variance in 
prediction. Table 4.12 lists the most significant correlations between εOS, terms in εPT and terms in 
εERT. 
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Table 4.12. Correlations between model error parameters in simultaneous posterior 
samples 

Parameter 1 Parameter 2 Correlation 
OS(Pa)ε   PT

0 (Pa)b  -0.91 

OS(Pa)ε  T
1
P (Pa)b  -0.51 

OS(Pa)ε  T
2
P (Pa)b  -0.13 

OS(Pa)ε  
2ERT

0 (W/m )c  -0.35 

OS(Pa)ε  
2

1
ERT (W/m )c  -0.17 

OS(Pa)ε  
2

2
ERT (W/m )c  0.11 

PT
0 (Pa)b  

2
0
ERT (W/m )c  0.26 

T
1
P (Pa)b  

2
1
ERT (W/m )c  0.14 

T
2
P (Pa)b  

2
2
ERT (W/m )c  -0.03 

4.7 Conclusions 
A segmented Bayesian model calibration approach is investigated as an alternative to full, 

simultaneous calibration for isolated uncertainty quantification and reduced computational cost. 
The objectives in this study of a segmented calibration approach include identifying the required 
characteristics of calibration, identifying the appropriate uncertain parameters and errors for 
calibration throughout the segmented process, and assessing the improved efficiency and 
viability of segmented model calibration. A Bayesian network is constructed for aerodynamic 
pressure and heating model predictions corresponding to aerothermal experiments for flat plate 
and spherical dome protuberances subjected to hypersonic flow conditions. The aerodynamic 
pressure and heat flux data are used for simultaneous and segmented calibration of uncertain 
model inputs, measurement errors, and model discrepancy for aerothermal predictions. The 
aerothermal problem was segmented into oblique shock relations, piston theory, and Eckert’s 
reference temperature method. To quantify the viability and potential benefit of isolating 
calibrations of models in the network, segmented and simultaneous calibration are compared 
using the Kullback-Leibler distance and Bayes factor metrics. For model calibration using the 
aerothermal data, the segmented approach yielded greater prediction uncertainty than the 
simultaneous approach due to inherent correlations lost through the segmentation. However, the 
Bayes factor values comparing the likelihoods of simultaneous and segmented calibration results 
are still close to 1, therefore neglecting correlations may be acceptable for this problem. In 
addition, the reduction in sample size required for convergence using the segmented approach 
instead of simultaneous calibration was 79.5%, 65.8%, and 24.7% for the three aerothermal 
models, respectively, needed for convergence using the simultaneous approach. 

Further studies using the aerodynamic pressure and heat flux data to calibrate models in the 
aerothermoelastic prediction will be developed to include the heat transfer and aeroelastic 
disciplines.. For example, the Glass and Hunt data can be extended to calibrate the transient heat 
transfer model parameters and time-dependent discrepancy in addition to the aerothermal models 
considered in this study. Other investigations of interest are the effect of coupling between 
aeroelastic and aerothermal predictions as well as the dependence the calibration parameters on 
model assumptions and simplifications. Once all models used in the aerothermoelastic prediction 
are calibrated, confidence in the updated prediction needs to be quantified. 
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5 BAYESIAN CALIBRATION OF AEROTHERMAL MODELS USING TIME-
DEPENDENT DATA 

In this section, the Bayesian calibration approach for using observed aerodynamic pressure 
and temperature measurements to reduce uncertainty in the aerothermal predictions is presented. 
Uncertain model inputs, model discrepancy, and measurement errors are considered for 
calibration. Additionally, the dynamic Bayesian network is constructed for the coupled, transient 
aerothermal problem and two implementations of time-dependent discrepancy models are 
compared and discussed. Prior distributions for discrepancy model parameters in Eckert’s 
reference temperature and linear heat transfer are presented. A direct calibration performance 
comparison between global and incremental discrepancy application at the dome midpoint 
follows using a time-dependent Bayes’ factor for model selection. The selected discrepancy 
treatment is applied to the full dome for validation.  

5.1 Bayesian Model Calibration Methodology for Time-Dependent Data 
Consider Bayesian calibration of a model η(ϕ), which contains an uncertain parameters ϕ  

composed of model inputs, discrepancy parameters, or measurement errors with assumed prior 
distributions π(ϕ), based on prior experience, expert opinion, or historical data. With the 
observed data y, the distribution of the unknown parameters is updated using continuous Bayes' 
theorem in Eq. (5.1).  

 

𝜋𝜋(𝝓𝝓|𝑦𝑦) =
Pr[𝑦𝑦|𝜂𝜂(𝝓𝝓)]𝜋𝜋(𝝓𝝓)

∫ 𝑃𝑃𝑃𝑃[𝑦𝑦|𝜂𝜂(𝝓𝝓)]𝜋𝜋(𝝓𝝓)𝑑𝑑𝝓𝝓
 (5.1) 

 

Thus, Bayesian updating reduces the uncertainty in parameters ϕ given observations y. 
Bayes’ theorem is rewritten for the aerodynamic pressure, heat flux, and heat transfer predictions 
(from piston theory, Eckert’s reference temperature, and linear heat transfer, respectively) and 
Glass and Hunt data in Eq. (2.8). Recall from Section 2, the heat flux data reported by Glass and 
Hunt was used to extract the temperature history across the panel. For this reason, only the 
derived temperature history and pressure can be used in the Bayesian network. 

𝜋𝜋�𝝓𝝓�𝑦𝑦𝑝𝑝,𝑦𝑦𝑇𝑇� =
Pr�𝑦𝑦𝑝𝑝,𝑦𝑦𝑇𝑇|𝑝𝑝𝑃𝑃𝑇𝑇(𝝓𝝓),𝑄𝑄𝐸𝐸𝐸𝐸𝑇𝑇(𝝓𝝓),𝑇𝑇𝐻𝐻𝑇𝑇(𝝓𝝓)�𝜋𝜋(𝝓𝝓)

∫ Pr�𝑦𝑦𝑝𝑝,𝑦𝑦𝑇𝑇|𝑝𝑝𝑃𝑃𝑇𝑇(𝝓𝝓),𝑄𝑄𝐸𝐸𝐸𝐸𝑇𝑇(𝝓𝝓),𝑇𝑇𝐻𝐻𝑇𝑇(𝝓𝝓)�𝜋𝜋(𝝓𝝓)𝑑𝑑𝝓𝝓
 (5.2) 

 
The Bayesian network for Eq. (5.2) is constructed using the relationships between the 

aerothermal models and available Glass and Hunt data presented in Section 2.2. Figure 5.1 
shows the Bayesian network and the relationships between the aerodynamic pressure, heat flux, 
and heat transfer models (p4, Q4, Tw), aerothermal data (yp, yT), model inputs (p1, M1, Tw,0), 
measurement errors (𝜀𝜀𝑦𝑦𝑇𝑇,𝜀𝜀𝑦𝑦𝑝𝑝), and discrepancy terms for calibration (εPT, εERT, εHT).  
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Figure 5.1. Aerothermal Bayesian Network for Glass and Hunt experiments 

 Recall that the Q4 prediction from Eckert's reference temperature is a function of T4 obtained 
from isentropic relations with p4 predicted by piston theory. Therefore, the error in piston theory 
εPT is propagated to Q4 calculation, as shown in Figure 5.1. Similarly, the error in the heat flux 
boundary condition prediction should be passed it forward to the heat transfer model.  

Note, the Bayesian network in Figure 5.1 has both stationary and transient components, with 
pressure remaining constant for a rigid dome configuration, while temperature and heat flux 
evolve through time. The transient module in Figure 5.1 can be expanded to a transient Bayesian 
network of time-dependent heat flux and temperature predictions and data as represented in 
Figure 5.2. The transient Bayesian network illustrates the relationship between the available 
models, Glass and Hunt data, and model discrepancy ε in a coupled, quasi-static prediction. 

 

 
  

Figure 5.2.  Bayesian Network with Time-Dependent Data for Aerothermal Coupling 

The primary objective of this study is to observe the coupled, time-dependent aerothermal 
models and investigate strategies for modeling the discrepancy.  For example, using these 
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models in succession for a transient aerothermal analysis without correction results in the 
coupled aerothermal prediction and temperature data comparison shown in Figure 5.3. Observe 
that the uncorrected models approximately predict a linear temperature history for the dome 
midpoint and cannot capture the system’s induced movement toward equilibrium. Figure 5.4 
demonstrates the discrepancy magnitude growing through time with a maximum error of 18 
degrees Kelvin observed at 5 seconds.  
 

 
 

 
Figure 5.3. Nominal aerothermal temperature prediction compared to midpoint data 

  
 

Figure 5.4. Aerothermal prediction error compared to midpoint data 

To focus efforts on the transient aspects of the aerothermal problem, the connection between 
the stationary and transient sections of the Bayesian network is supplemented directly by the 
Glass and Hunt pressure data yp, as demonstrated in Figure 5.2. This removes εPT and 𝜀𝜀𝑦𝑦𝑝𝑝from 
calibration consideration and ϕ becomes the set of unknown parameters in εERT, and εHT, which 
are discrepancy models for Eckert’s reference temperature method and heat transfer, 
respectively. 
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5.2 Global and Incremental Discrepancy Modeling for Time-Dependent Problems  
In a related study by Smarslok et al. [23], systematic error models were chosen to represent 

the inadequacy in the aerodynamic pressure and heat flux predictions. It was observed that the 
systematic error models were not fully sufficient to predict the data with reasonable confidence 
across the dome. Subsequently, DeCarlo et al. [24] expanded this framework to include quadratic 
error models with respect to dome slope for aerodynamic pressure and heat flux predictions 
across the dome to capture the relationship between model discrepancy and slope of the dome. 
The present study builds upon the previous framework by addressing coupled aerothermal model 
discrepancies through time across the dome. 

The model discrepancy formulation followed in this study is based on the Kennedy and 
O'Hagan (KOH) calibration framework [21]. Relevant sources of uncertainty identified in the 
Bayesian network, including data uncertainty, input parameter uncertainty, and input-specific 
model discrepancy have representations in the context of KOH discrepancy, shown in Eq. (5.3). 

 
𝑦𝑦(𝒙𝒙, 𝑡𝑡) = 𝜂𝜂(𝒙𝒙, 𝑡𝑡,𝝓𝝓) + 𝜀𝜀(𝒙𝒙, 𝑡𝑡,𝝓𝝓) + 𝜀𝜀𝑦𝑦 (5.3) 

 
where, η is the model under consideration, ϕ is the set of parameters being calibrated, ε is the 
model discrepancy function evaluated at specific input vectors x at time t, and εy ~ N(0,σn) is the 
measurement uncertainty associated with that set of data. 

The transient, coupled aerothermal solution is a quasi-static approximation at a rate of Δt, 
which lends itself to two ways of implementing the time-dependent discrepancy functions in the 
Bayesian network. The first strategy involves treating model discrepancy globally by correcting 
the time-dependent quasi-static prediction after the set of n evaluations to the last time point of 
interest at nΔt. Applying the discrepancy function in this way offsets the prediction by ε, where 
the form can be estimated a priori by calculating the difference between the n uses of the model 
and data. For example, the discrepancy between a linear quasi-static temperature prediction and 
Glass and Hunt temperature data has a quadratic trend as observed in Figure 5.4, and Eq. (5.4) 
was selected. 

𝜀𝜀HT = 𝑑𝑑0 + 𝑑𝑑1𝑡𝑡 + 𝑑𝑑2𝑡𝑡2 (5.4) 

  
The discrepancy in Eckert’s reference temperature follows a quadratic trend with respect to 

dome slope, as demonstrated by DeCarlo et al. [24]. In addition to dependence on slope, the 
discrepancy in heat flux must also account for a functional variation through time. Thus, a linear 
relationship with time is assumed for εERT in Eq. (5.5). 
 

𝜀𝜀ERT = 𝑐𝑐0 + 𝑐𝑐1𝑡𝑡 + 𝑐𝑐2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑐𝑐3 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
2

 (5.5) 

  
 The alternative to a global treatment of errors is by incorporating the discrepancy models for 
Eckert’s reference temperature and linear heat transfer in Eqs. (5.4) and (5.5) incrementally at 
each time step. This is accomplished by correcting the prediction each time one of the coupled 
aerothermal models are evaluated and recognizing the magnitude of errors may change 
throughout the time domain. Equation (5.3) corresponds to the global model discrepancy form. A 
mathematical representation of incremental discrepancy modeling within the KOH calibration 
framework is shown in Eq. (5.6), where data yi at each time step Δt is explained by model 
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prediction ηi as a function of the previous model output ηi-1, model discrepancy ε and 
measurement error εy.  
 

𝑦𝑦𝑖𝑖(𝒙𝒙, 𝑡𝑡𝑖𝑖) = 𝜂𝜂𝑖𝑖(𝒙𝒙,𝜂𝜂𝑖𝑖−1,𝝓𝝓,𝛥𝛥𝑡𝑡) + 𝜀𝜀(𝒙𝒙, 𝑡𝑡𝑖𝑖,𝝓𝝓) + 𝜀𝜀𝑦𝑦 (5.6) 
 
 Figures 5.5 and 5.6 graphically show the prediction and correction for global and incremental 
model discrepancy in Eqs. (5.3) and (5.6), where both treatments implement the time and slope-
dependent discrepancy models in Eqs. (5.4) and (5.5). The global and incremental discrepancy 
strategies are used to correct the time-dependent temperature output. For a global model 
discrepancy implementation, the model output is a full time history up until nΔt, whereas 
incremental discrepancy treats the model output as the model evaluation at every Δt. 
 

 
Figure 5.5. Correcting Predictions using Global Model Discrepancy 

 
Figure 5.6. Correcting Predictions using Incremental Model Discrepancy 

The incremental approach is particularly important for coupled, multi-disciplinary models, 
where errors are being propagated between models at each time step. Figures 5.5 and 5.6 can be 
re-imagined for the coupled aerothermal models where Eckert’s reference temperature is 
predicting the temperature gradient, while linear heat transfer uses information on the gradient 
and predicts the next temperature in time. Correcting coupled models incrementally will in turn 
couple their model discrepancies and exploit their relationship through the Bayesian network to 
update information on both.  

Further, the incremental approach results in separable models with quantified errors and can 
be applied individually to other physical systems that need not be coupled. This is in contrast to 
global discrepancy application, where the calibration corrects the cumulative effect of errors over 
time as a consequence of using both models indiscriminately. Thus the coupled aerothermal 
models calibrated using global discrepancy must be taken forward as a unit. 
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Note, the incremental and global discrepancy functions have the same form, however the 
calibrated coefficients for heat transfer discrepancy (d0, d1, d2) will be different depending on the 
strategy implemented. Since the incremental discrepancy strategy corrects the prediction at each 
time step, then the magnitude of the discrepancy at a given time t is less than that of the global 
discrepancy. Section 5.3 will list appropriate prior distributions for Bayesian calibration of the 
model discrepancy parameters, compare the incremental and global error application approaches 
through both sensitivity analyses and calibration, and select an error treatment to apply to the full 
dome for validation. Section 5.3 will list appropriate prior distributions for Bayesian calibration 
of the model discrepancy parameters.  

5.3 Prior Uncertainty and Discrepancy Implementation Selection 
Prior distributions for parameters of εERT and εHT using both incremental and global treatments 

of model discrepancy are shown in Table 5.1. All prior distributions are uniform distributions 
with lower and upper bounds specified. Prior distribution ranges were chosen by passing the 
maximum likelihood values of the other parameters through the transient aerothermal models 
and comparing nominal predictions to the Glass and Hunt data.  

 
Table 5.1. Prior Distributions for Discrepancy Model Parameters 

Parameter 

Incremental Global 
Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

c0 (W/cm2) -0.5 0.3 -0.5 0.3 
c1 (W/cm2t) -0.1 0.1 -0.1 0.1 
c2 (W/cm2) -100 200 -100 200 
c3 (W/cm2) -1000 1000 -1000 1000 
d0 (K)  -0.1 0.1 -3 3 
d1 (K/t) -0.1 0.1 -4 3 
d2 (K/t2) -0.1 0.1 -2 1 

 
Both discrepancy treatments are applied through the dynamic Bayesian network and used to 

calibrate discrepancy models at the midpoint of the dome. The calibration domain consists of 
time-dependent temperature data up until 4 seconds into Runs 30, 31, and 32 of Glass and Hunt 
turbulent flow experiments. The remaining second of temperature data is used for decision-
making. For this comparison only the dome midpoint temperature data (where 𝜕𝜕𝑑𝑑/𝜕𝜕𝑑𝑑 is zero) is 
considered; the quadratic slope terms have no effect in this single point calibration. 

Figures 5.7 and 5.8 show the calibrated incremental and global discrepancy models for heat 
transfer through time. Note that both models have similar quadratic trends, however incremental 
discrepancy mean predictions are on average two orders of magnitude less than those of the 
global discrepancy mean prediction. Further, the uncertainty in the global discrepancy model is 
growing, whereas the uncertainty in the incremental discrepancy model is relatively constant.   
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Figure 5.7. Calibrated global discrepancy model through time 

 
 

Figure 5.8. Calibrated global discrepancy model through time 

The predictions from both calibrated discrepancy models at the dome midpoint decides which 
should be used for the remainder of the dome points. The calibrated discrepancy models are 
propagated forward through the network for Runs 30, 31, and 32 predictions. 
 

 

 
Figure 5.9. Calibrated aerothermal model predictions using global discrepancy application 
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Figure 5.10. Calibrated aerothermal model predictions using incremental discrepancy 
application 

Figures 5.9 and 5.10 compare the predictions from calibrated aerothermal models for both 
discrepancy treatments. Note that the calibration domain from 0 to 4 seconds is predominantly 
linear, whereas the validation temperature data deviates significantly from linearity. The global 
model discrepancy demonstrates a linear prediction continuing  into the validation domain. 
However, the incremental discrepancy model is able to capture the nonlinear trend in the 
calibration domain and extrapolate it to the validation domain. Confidence bounds in Figures 5.9 
and 5.10 indicate more confidence in global discrepancy modeling prediction; however, 
particularly in Runs 30 and 32 there is deviation between the prediction and data in the 
extrapolation. Bayes factor is used to more formally compare the validation performance of the 
global and incremental strategies. Equation (5.7) shows the Bayes factor for model selection.  

 

𝐵𝐵(𝑡𝑡𝑖𝑖) =
Pr(𝑦𝑦𝑇𝑇|𝝓𝝓1, 𝑡𝑡𝑖𝑖)
Pr(𝑦𝑦𝑇𝑇|𝝓𝝓2, 𝑡𝑡𝑖𝑖)

=
∫ Pr(𝑦𝑦𝑇𝑇|𝝓𝝓1, 𝑡𝑡𝑖𝑖)𝜋𝜋1(𝝓𝝓1)𝑑𝑑𝝓𝝓
∫ Pr(𝑦𝑦𝑇𝑇|𝝓𝝓2, 𝑡𝑡𝑖𝑖)𝜋𝜋2(𝝓𝝓2)𝑑𝑑𝝓𝝓

 (5.7) 

 
To compute the Bayes factor, the likelihood ratio of two competing models is computed, 

which incorporates both accuracy and precision into a decision metric. In Eq. (5.7), let the 
likelihood corresponding to incremental discrepancy model be defined by parameters ϕ1 and 
joint probability distribution π1, and let the global discrepancy model be defined by parameters 
ϕ2 and joint probability distribution π2. Therefore, when B(ti) is greater than 1, the incremental 
discrepancy prediction supports the data better the global discrepancy. The integral form in Eq. 
(5.7) includes the likelihood function of the data supporting the prediction Pr(y|ϕ) and the 
probability density function (PDF) of the both hypotheses, π1(ϕ1) and π2(ϕ2). Bayes factors 
through the validation domain are shown in Figure 5.11. 
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Figure 5.11. Likelihood ratio between incremental and global discrepancy approaches 

through time 

The Bayes factors over the validation domain in Figure 5.11 are consistently much greater 
than one, favoring the incremental approach and following approximately a linear trend through 
time on a semi-logarithmic scale. Averaged time-dependent prediction standard deviations σ 
(inverse confidence) in both approaches every 0.2 seconds are listed in Table 5.2. The 
uncertainty from both discrepancy models grow through time. The Bayes factors are so large due 
to severe bias in the global discrepancy model in the validation domain. 
 

Table 5.2. Averaged time-dependent temperature uncertainty and likelihood ratio 

Time (s) σincremental 
(K) σglobal (K) 

4.0 0.47 0.36 
4.2 0.67 0.43 
4.4 0.91 0.51 
4.6 1.20 0.60 
4.8 1.55 0.70 
5.0 1.95 0.81 

 
Figure 5.11 and Table 5.2 indicate the incremental approach is more consistent with the time-

dependent temperature data especially farther away from the calibration domain. Recall, the 
same heat flux and heat transfer discrepancy models were used in both cases but by applying 
discrepancy incrementally we have greater extrapolation ability. In the next section, the 
incremental discrepancy modeling approach is applied to the remaining dome centerline points 
for calibration. 

5.4 Calibration with Incremental Discrepancy for Dome Predictions 
Bayesian calibration of the model discrepancy coefficients was performed using the dynamic 

Bayesian network with the time-dependent aerothermal data from Figure 5.2. The data from all 
three runs was considered to calibrate the model discrepancy from Eqs. (5.4) and (5.5) at each of 
the eleven points along centerline of the Glass and Hunt dome. The incremental discrepancy 
treatment was chosen for this part of the investigation based on the Bayes factor comparison in 
Figure 5.11 and Table 5.2. For the Bayesian calibration, the posterior distributions for the 
uncertainty discrepancy parameters were estimated using 104 samples from the Markov Chain 
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Monte Carlo (MCMC) algorithm called slice sampling. Figures 5.12-5.14 show the corrected 
predictions using the incremental discrepancy approach for Runs 30, 31 and 32, respectively. For 
all three cases, the predictions shown at 1 and 3 seconds are in the calibration domain, whereas 5 
seconds is in the validation domain.  

 

 
 

Figure 5.12. Calibrated Run 30 prediction across dome at 1, 3, and 5 seconds 

 

 
 

Figure 5.13. Calibrated Run 31 prediction across dome at 1, 3, and 5 seconds 

 

 
 

Figure 5.14. Calibrated Run 32 prediction across dome at 1, 3, and 5 seconds 

Figures 5.12-5.14 show small model discrepancy in the calibration time domain (t = 1s and 
3s) and growing extrapolation uncertainty in the validation domain (t = 5s). This is analogous to 
Figure 5.10, where uncertainty increased when predicting beyond 4 seconds. Table 5.3 lists the 
average uncertainty in the calibrated predictions for each experiment. Run 31 shows the most 
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prediction uncertainty at 5 seconds, where the 95 percent confidence bounds are larger than those 
in Runs 30 and 32.  
 
Table 5.3. Calibrated temperature prediction uncertainty at t=1, 3, and 5 seconds for Runs 

30, 31, and 32 

Time (s) σ30  (K) σ31 (K) σ32 (K) 
1.0 0.10 0.11 0.10 
3.0 0.21 0.25 0.21 
5.0 0.24 0.33 0.24 

 
The next section will use the model reliability metric to assess the confidence in the corrected 

predictions using incremental model discrepancy. 

5.5 Confidence Assessment of Calibrated Aerothermal Models Using the Model 
Reliability Metric 

To assess the confidence in the calibrated discrepancy models, a model reliability metric was 
explored as a measure of model predictive capability. Equation (5.8) shows the reliability r 
quantified as the probability that the difference between the model prediction ym and data yd 
being within a tolerance δ [51]. Thus, the remaining model uncertainty after calibration is used to 
assess this model reliability. 

𝑃𝑃 = Pr [−𝛿𝛿 < 𝑦𝑦𝑑𝑑 − 𝑦𝑦𝑚𝑚 < 𝛿𝛿] (5.8) 

The probability in Eq. (14) may be estimated through Monte Carlo simulation, or efficient 
reliability analysis methods such as the first-order or second-order reliability methods 
(FORM/SORM). The model reliability is straightforward in interpretation. A tolerance of δ= 1K 
is used in the following reliability analysis. 

 

 
Figure 5.15. Reliability of calibrated aerothermal models across the dome in the validation 

domain (t = 4-5s) 

Figure 5.15 shows greater confidence in the calibrated aerothermal models towards the middle 
of the dome. This suggests that the points near the edge of the dome exhibit behavior not 
captured in the discrepancy models, which was observed in Figures 5.12 and 5.14. Furthermore, 
the model reliability metric decreases as the uncertainty grows through time. 
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5.6 Summary and Conclusions 
This research is part of a series of investigations on quantifying the confidence in coupled 

aerothermal elastic models for hypersonic aircraft structures. Bayesian model calibration 
methods were extended for a coupled, time-dependent problem. A dynamic Bayesian network 
for coupled aerothermal models (including, aerodynamic pressure and heat flux, and transient 
heat transfer) and time-dependent data was developed. Bayesian model calibration was 
performed for model discrepancy using time-dependent temperature data from historic 
aerothermal experiments conducted at NASA's 8-foot High-Temperature Tunnel. Two ways to 
implement the dynamic model errors were investigated, and it was determined that applying 
incremental errors through time supplied the model with greater extrapolation ability. Finally, the 
incremental discrepancy strategy was extended to calibrate the dynamic aerothermal error 
models at eleven points along the dome centerline. The model reliability metric for model 
validation was used to assess spatial and temporal confidence in the aerothermal predictions 
across the dome. Confidence in calibrated aerothermal discrepancy models increased towards the 
dome midpoint and over time through the validation domain.  
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6 INVESTIGATING MODEL UNCERTAINTY IN AEROELASTIC RESPONSE OF 
THIN PANELS 

Recent research efforts have focused on the development of computational frameworks 
enabling the prediction of coupled fluid-thermal-structural response [4-16]. McNamara and 
Friedmann (2011) provided a comprehensive review of different solution strategies for 
calculating the response of a hot structure in a hypersonic flow [4]. A stochastic collocation 
approach was used by Lamorte et al. (2014) for propagating uncertainty in aerothermoelastic 
analysis [52]. A subsequent study expanded on uncertainty propagation in aerothermoelastic 
analysis for hypersonic vehicles with emphasis on assessing the impact of aerothermoelastic 
deformation on aerodynamic heating [14]. Culler and McNamara (2011) identified two-way 
coupling between structural deformation and aerodynamic heating as an important consideration 
in the aerothermoelastic modeling of a panel [11]. Skujins (2013) developed a reduced-order 
modeling methodology for unsteady aerodynamics based on linear convolution with a nonlinear 
correction factor applicable from subsonic to hypersonic flow speeds [53]. The nonlinear 
correction factor is computed using data from CFD simulations and kriging. These efforts 
underscore the importance of understanding the uncertainty in a coupled aerothermoelastic 
model, in particular model uncertainty.  

To reduce the computational cost of long-duration dynamic response simulations, the solution 
of the coupled problem can be obtained with reduced order models (ROMs). However, reduced 
order models introduce model uncertainty in the prediction due to solution approximation and 
model-form errors. For example, piston theory, developed by Lighthill (1953), provides a simple 
point-wise relation between the aerodynamic pressure and the surface motion [54]. The strengths 
of this model are its simplicity and computational efficiency; on the other hand, the accuracy of 
piston theory greatly diminishes in the presence of significant three-dimensional flow effects, 
combinations of high Mach number and surface inclination, and viscous effects [55-57].  

Uncertainty exists due to imperfect knowledge of the system behavior, physical variability, 
model order reduction, assumptions and approximations, and the limited experimental data 
available for model calibration and validation. Liang and Mahadevan (2011) developed a 
systematic error quantification methodology, which distinguished various sources of uncertainty 
that are inherent in the predictions of computational models [45]. These sources of uncertainty 
were grouped in three categories: (1) numerical errors arising from the model inputs, 
discretization errors from finite element analysis (FEA) mesh discretization, and surrogate model 
prediction errors; (2) uncertainty quantification errors due to the finite number of samples taken 
in the uncertainty propagation analysis; and (3) model-form errors that arise from imperfect 
modeling of physics.  
The quantification of model-form errors has been most often used to gain understanding on the 
predictive capability of computational models. Kennedy and O’Hagan (2001) proposed a 
Bayesian model calibration framework to account for various sources of uncertainty in model 
predictions and the calibration of uncertain inputs [21]. In their treatment of model uncertainty, 
the discrepancy is added to the model prediction in a non-intrusive form. Moser and Oliver 
(2013) developed a different strategy, where the model inadequacy is introduced at the source of 
the error and calibrated with the uncertain input parameters [58]. The application they considered 
for this approach was the calibration of turbulence model parameters of RANS CFD models.  

The approach developed in the current study seeks to enhance the aerodynamic pressure 
predictions of piston theory with a model-form error model. This is achieved through quantifying 
the model inadequacy in the local slope of the panel induced by boundary layer displacement 
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effects. This approach will be referred to as effective slope model. The advantage of this 
approach is that it uses the physics built into piston theory as a foundation, and incorporates 
information from higher-fidelity models (CFD) to quantify the model uncertainty to improve 
predictions, while retaining a reduced computational cost. This follows a similar philosophy as in 
the multifidelity optimization community, but with the objective of response prediction. For 
example, March and Willcox (2012) presented a provably convergent multifidelity optimization 
algorithm that uses radial basis function interpolation to capture the error between high-fidelity 
and low-fidelity functions, and then the error was added to the low-fidelity function to create a 
surrogate model of the high-fidelity function in the neighborhood of a trust region [59].  

The impact of model uncertainty in the aerodynamic pressure acting on a two-dimensional flat 
panel subjected to hypersonic flow will be explored from both single- and cross-disciplinary 
perspectives. From the cross-disciplinary point of view, the nonlinear flutter response of the 
panel will be computed and the effect of model uncertainty in the aerodynamic pressure on the 
limit-cycle oscillation amplitude of the panel will be analyzed.  

An outline of this section is as follows. Section 6.1 describes the two components of the 
aeroelastic computational model: 1) the aerodynamic pressure model (i.e., piston theory), and 2) 
the structural ROM and its formulation. Next, discussion on the development and verification of 
the piston theory with effective slope is presented in Section 6.2. Construction and results from 
the verification of the ROM developed for the structural component of the aeroelastic system are 
shown in Section 6.3. The forward propagation of uncertainty in the aeroelastic model response 
is performed in Section 6.4 and the LCO amplitude and frequency results from piston theory and 
the effective slope model compared. Finally, a sensitivity analysis is performed to assess how 
many modes should be used in the selection of CFD cases for the construction of the effective 
slope approach. 

6.1 Aeroelastic Model Definitions 
Hypersonic aircraft structures are subjected to intense, coupled, fluid-thermal-structural 

loading during high-speed flight. The aeroelastic model components of  the fluid-structure 
interaction are shown in Figure 6.1. The hypersonic flow acting on the structure results in 
aerodynamic pressure on the wetted surface of the panel. This leads to elastic deformation of the 
panel into the flow field, resulting in feedback on the flow.   

 

 
Figure 6.1. Aeroelastic coupling 

The aeroelastic model is used to investigate the impact of model uncertainty on nonlinear 
panel flutter. Flutter is an aeroelastic instability where the amplitude of vibration of a structural 
component in a flow field increases without a bound. In the case of a panel, nonlinear membrane 
stretching provides a stabilizing effect that restrains the panel motion to a bounded amplitude for 
limit cycle oscillations (LCO). Panel flutter not only provides an extreme response scenario for 
this coupled system, but is a design constraint of aerospace structures.   

Figure 6.1 is a schematic of the solution of the aeroelastic problem. The panel displacement 
and velocity, ( ),w x t and ( ),w x t , are computed using a structural ROM. The panel deformation 

Structural

Aerodynamicsww ,

aerop
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serves as a boundary condition to the flow problem, for which oblique shock relations are used to 
compute the pressure after the shock, and piston theory to obtain the pressure at the deformed 
surface of the panel. Note that piston theory assumes that the flow is inviscid. This pressure is 
then used as a right-hand-side term (i.e., loading) in the solution of the ROM equations of 
motion. A brief description of piston theory and the structural ROM methodology used in this 
work are presented in the following subsections.  

 

 
Figure 6.2. Aeroelastic solution, panel slope and velocity is transferred to piston theory and 

aerodynamic pressure is transferred to the structural solution 

6.1.1 Aerodynamic Pressure  
Consider a panel section on the forebody of a representative hypersonic vehicle configuration, 

as shown in Figure 2.1 [11]. As the vehicle is subjected to a hypersonic flow, an attached oblique 
shock is created at the forebody leading edge (location ‘1’). The surface before and after the 
panel is assumed to be rigid; therefore, the inviscid flow properties at locations 2 and 3 are the 
same. These flow properties are obtained using oblique shock relations.  

High-fidelity numerical simulations of the nonlinear structural response and the complex 
hypersonic flow environment are computationally very expensive. An uncertainty quantification 
(UQ) study requires several samples from a computational model, motivating the need for 
computationally efficient tools. Therefore, piston theory, which provides a simple point-function 
relation between the aerodynamic pressure and the motion of the panel, will be used for 
computing the steady and unsteady aerodynamic loads on the structure. Piston theory has been 
observed to provide reasonably accurate pressure predictions for sufficiently large Mach 
numbers and as long as the magnitude of the normal component of fluid velocity never exceeds 
the speed of sound in the undisturbed fluid [9]. However, the accuracy of piston theory greatly 
diminishes in the presence of significant three-dimensional flow effects, combinations of high 
Mach number and surface inclination, and viscous effects [18-21]. The third-order piston theory 
expression is shown in Eq. (2.5). In order to obtain the aerodynamic pressure, the deformation of 
the panel needs to be computed. This will be achieved with the structural ROMs described in the 
next subsection.  

6.1.2 Structural Reduced Order Model (ROM) Formulation 
 

The structural ROMs considered in this study are based on a representation of the nonlinear 
geometric response in terms of a set of basis functions, 
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 ( ) ( ) ( )

1

M
n

n
n

t tη
=

= ∑u ψ  (6.1) 

where ( )tu  represents the vector of displacements of the finite element degrees of freedom, ( )nψ  

are specified, constant basis functions, and ( )n tη  are the time dependent generalized coordinates.  
The ROM procedure described here is achieved in the undeformed configuration 0Ω  for 

which the field equations are shown in Eq. (6.2). Note that summation is implied over repeated 
indices. 

 ( ) 0
0 0ij jk i i

k

F S b u
X

ρ ρ∂
+ =

∂
  (6.2) 

Where S  is the second Piola-Kirchhoff stress tensor, 0ρ  is the density with respect to the 
reference configuration, and 0b  is the vector of body forces, all of which are assumed to depend 
on the position 0∈ΩX , [60,61]. Furthermore, in Eq. (6.3), F  denotes the deformation gradient 
tensor of components 

 i i
ij ij

j j

x uF
X X

δ∂ ∂
= = +

∂ ∂
 (6.3) 

where ijδ  is the Kronecker delta and = −u x X  is the displacement vector, x being the position 
vector in the deformed configuration. In the present formulation the material is assumed to be 
linear elastic, so S  and the Green strain tensor E  satisfy 

 ij ijkl klS C E=  (6.4) 

where C  is a fourth order elasticity tensor, which is a function of the undeformed coordinates X . 
Carrying on with the formulation, assume next the displacement field iu  in the continuous 

structure in the form 

 ( ) ( ) ( )( )

1
,            for 1, 2,3

M
n

i n i
n

u t t U iη
=

= =∑X X  (6.5) 

where ( )( )n
iU X  are specified, constant basis functions satisfying the boundary conditions also in 

the undeformed configuration and this is the continuous space equivalent of the discrete, finite 
element model, representation of Eq. (6.1). 

By introducing Eq. (6.5) in Eqs. (6.2)-(6.4) and enforcing the condition that the error be 
orthogonal to the basis (i.e., Galerkin approach), a set of nonlinear ordinary differential equations 
for the generalized coordinates ( )n tη  can be obtained. This leads [62] to the reduced order 
model equations 
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 (1) (2) (3)
ij j ij j ij j ijl j l ijlp j l p iM D K K K Fη η η η η η η η+ + + + =   (6.6) 

where a linear damping term ij jD η  has been added to collectively represent various dissipation 

mechanisms. Furthermore, ijM  denotes the elements of the mass matrix, (1)
ijK , (2)

ijlK , (3)
ijlpK  are 

the linear, quadratic, and cubic stiffness coefficients and iF  are the modal forces. The indirect 
evaluation of the coefficients in Eq. (6.6) by Hollkamp and Gordon (2005) from a finite element 
model is used here [63]. 

With the aerodynamic pressure and structural response models defined, the next section will 
investigate and quantify the model-form uncertainty in the aerodynamic pressure predictions 
obtained with piston theory. 

6.2 Model Uncertainty in Aerodynamic Pressure 
The objective of mathematical models is to make predictions about the behavior of a system. 

However, no model is perfect due to various sources of uncertainty, so the predictions will not 
exactly equal the true value of the process it is intended to represent. Model uncertainty (also 
referred to as model inadequacy) can be defined as the difference between the true mean of the 
process and the output of the model at specified inputs [21]. Model uncertainty δ can be 
introduced in two general forms. First, by adding a non-intrusive, external model discrepancy 
term, as shown in Eq. (6.7). 

 ( ),y m x φ δ ε= + +  (6.7) 

Where x are the model inputs, φ are the uncertain model parameters, and ε represents the 
measurement uncertainty. A separate model discrepancy term is a commonly-used and flexible 
approach to quantifying the model form uncertainty in m [21,45]. However, it may be desirable 
to capture the nature of the model inadequacy at the source of the error within the model itself, as 
shown in Eq. (6.8) [58]. This can help preserve the underlying physics and original model form, 
while still providing an improved, uncertainty-quantified prediction.  

 ( ), ,y m x φ δ ε= +  (6.8) 

The external and internal model discrepancy approaches are discussed in the following 
subsections in the context of model uncertainty in aerodynamic pressure predictions using piston 
theory.  

6.2.1 External Discrepancy Model 
Under realistic flow conditions, model-form error exists in piston theory due to unmodeled 

flow viscosity and significant three-dimensionality of the flow [55-57]. Using data available 
from tests conducted by Glass and Hunt (1986) on spherical dome protuberances subjected to 
hypersonic flow [44], Culler and McNamara (2010) [10] showed peak and average pressure 
discrepancies in piston theory of 54.5% and 18.6%, respectively. In a different study, DeCarlo et 
al. (2013) identified and calibrated through a Bayesian network a model-form error function with 
respect to the slope of the surface for selected domes from the Glass and Hunt tests [24]. The 
form of the model (i.e., quadratic polynomial) was inferred from an initial interrogation of the 
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errors between 3rd-order piston theory predictions and experimental observations. Perez et al. 
(2013) went on to incorporate the calibrated discrepancy model terms into piston theory, and 
used the resulting model for the prediction of flutter and LCO amplitude of a panel in the post-
flutter regime [32]. In addition, a preliminary verification study was conducted to assess the 
quality of the calibrated discrepancy model with a larger range of slopes. The data considered for 
verification were CFD results published by Nydick et al. (1995) [64], who compared piston 
theory to full Navier-Stokes CFD simulations using a two-dimensional panel with a prescribed 
wall motion. Third-order piston theory with the calibrated discrepancy model from [24] showed 
significant improvement compared to the original piston theory predictions.  

Verification of the discrepancy model is revisited in this current research by comparing 
pressure predictions to higher-fidelity data obtained from a kriging surrogate constructed from a 
set of Navier-Stokes (i.e. RANS) CFD simulations of flow on a 2-D panel [55]. The structural 
deformations in the construction of the kriging surrogate were parameterized in terms of the first 
six structural mode shapes. The flow and structural parameters used in the construction of the 
surrogate are shown in Table 6.1. The panel is assumed to be simply-supported and located on a 
rigid wedge, as shown in Figure 2.1. Structural deformations of the panel proportional to the 
first, second, and third mode shapes were enforced for different modal amplitudes and the 
pressure coefficient computed with piston theory (PT), piston theory with the discrepancy model 
(PTδ), and the surrogate model (Surr). The first three mode shapes are shown in Figure 6.3. The 
absolute error between Surr

pC  and PT
pC  as a function of slope, and the values of Surr

pC , PT
pC , and 

PT
pC δ  as a function of the location along the streamwise direction are shown in Figures 6.4-6.6 for 

different modal amplitudes. These results show that the difference between PT
pC and Surr

pC can be 
modeled as a function of slope for a deformation proportional to mode 1 (i.e., similar to the Glass 
and Hunt domes). However, for higher-order modes (e.g., modes 2 and 3) two or more Cp values 
are possible for a given slope; therefore slope alone cannot fully describe the pressure trends for 
these structural configurations. In all cases, the pressure predicted by the surrogate model shows 
a sharp drop near the leading edge of the panel, which is not captured by the piston theory 
models. Due to the inviscid flow assumption used in piston theory, the non-zero slope at the edge 
of the panel becomes a sharp discontinuity for the flow. Nevertheless, the boundary layer leads 
to smooth flow from the flat rigid surface of the deformed panel.  

Table 6.1. Fluid and structural parameters for initial verification study 

Parameter Value Unit 
Altitude 30 km 

Freebody Surface 
Inclination 5 deg 

Freestream Mach 
Number 8 N/A 

Panel Length 1.5 m 
Panel Thickness 5 mm 

Twall 300 K 
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Figure 6.3. Transverse displacement component of the first, second, and third mode shapes 

of a 2-D panel. Each mode is scaled by a modal amplitude ai for i = 1, 2, and 3. 

 

 
(a) 

 
(b) 

Figure 6.4.  Pressure coefficient for panel displacement proportional to mode 1 with peak 
displacement equal to 10 panel thicknesses at M1 = 8: (a) pressure coefficient vs. location 

along the streamwise direction,  (b) absolute error between Surr
pC and PT

pC vs. slope. 
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(a) 

 
(b) 

Figure 6.5.  Pressure coefficient for panel displacement proportional to mode 2 with peak 
displacement equal to 3 panel thicknesses at M1 = 8: (a) pressure coefficient vs. location 

along the streamwise direction,  (b) absolute error between Surr
pC and PT

pC vs. slope. 

 
(a) 

 
(b) 

Figure 6.6.  Pressure coefficient for panel displacement proportional to mode 3 with peak 
displacement equal to 1.5 panel thicknesses at M1 = 8: (a) pressure coefficient vs. location 

along the streamwise direction,  (b) absolute error between Surr
pC and PT

pC vs. slope. 

The results presented in this section showed that the discrepancy in the pressure is not only a 
function of the slope, but also a function of the location along the streamwise direction on the 
panel. This observation will be used in the next subsection in the development of an error model 
that incorporates information from the viscous effects not modeled in piston theory. This new 
approach differs from the discrepancy model presented in this section in that the model-form 
error is introduced at the source, rather than externally.  

6.2.2 Internal Error Model using Effective Slope 
Boundary layer displacement effects have been identified as a potential issue with piston 

theory predictions in the literature [55-57]. Hypersonic flows are characterized by relatively 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

x/L

C
P

 

 

Surr

PT

PTdeltaδ

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

dw/dx

C
pSu

rr
 - 

C
pPT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

x/L

C
P

 

 

Surr
PT
PTdeltaδ

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-12

-10

-8

-6

-4

-2

0

2

4

6

8
x 10

-3

dw/dx

C
pSu

rr
 - 

C
pPT

57 
Approved for public release; distribution unlimited. 

 



thick boundary layers [64] which displace the outer inviscid flow and cause the body shape to 
appear much thicker. Accounting for the boundary layer displacement effects can be 
accomplished by the introduction of an effective slope. Then, the steady coefficient of pressure 
predicted from piston theory is given by Eq. (6.9) 

 ( )
2 3

22 1 1
4 12

eff eff effPT
p

dw dw dw
C x M M

M dx dx dx
γ γ

∞ ∞
∞

    + +
= + +    

     
 (6.9) 

where effdw dx is the effective slope. The effective slope is determined using the approach 
proposed by McNamara (2005) [65], where the coefficient of pressure computed from a CFD 
solution of the steady Navier-Stokes equations is equated with Eq. (6.9) at every location x 
desired 

 ( ) ( ) 0PT NS
p pC x C x− =  (6.10) 

where NS
pC is the pressure coefficients obtained from the CFD solution. The use of steady CFD 

data is based on the assumption that the steady flow components are dominant in hypersonic 
flows [56].  

The concept of effective slope leads to the notion that flow viscous effects introduce 
uncertainty in the local slope of the panel. The quantification of this uncertainty is propagated 
forward to determine the model-form uncertainty in piston theory. This is performed using 
information on geometric configurations obtained from the structural dynamics (i.e., the mode 
shapes of the structure). The uncertainty in the local slope of the panel is represented in Eq. 
(6.11) for a deformation proportional to the structural mode shape i 

 
( ) ( ) ( )

, , ,
, , ,

i
eff i i

i i i

dw x p M d x
x p M

dx dx
η ϕ

η δ η∞ ∞
∞ ∞= +  (6.11) 

where i
effdw dx is the effective slope which takes into account the boundary layer displacement, 

id dxϕ is the physical slope of mode i,  ηi is the corresponding weight or modal amplitude, and 

iδ is the error model. The error model is a function of space x, the modal amplitude ηi, and 
freestream flow properties p∞ and M∞. A general structural deformation can be parameterized in 
terms of a set of N mode shapes. For this case, the effective slope is represented as 

 ( ) ( ) ( )1

1

, ,..., , ,
, , ,

N
eff i i

i i i
i

dw x p M d x
x p M

dx dx
η η ϕ

η δ η∞ ∞
∞ ∞

=

 
= + 

 
∑  (6.12) 

The error model iδ contains zeroth-order effects that come from boundary layer information of 
the undeformed panel. To avoid overprediction of the effective slope, the zeroth-order effects in 
Eq. (6.12) are only accounted for in the mode 1 error model.  
As seen in Eqs. (6.13) and (6.14), the error model iδ is a function of several variables. In order to 
model these dependencies, iδ  is obtained by fitting the error between the effective and physical 
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slopes using kriging. It is important to highlight that the effective slope model needs a source of 
high-fidelity data, but it is not restricted to computational data; wind tunnel test data could also 
be used. 

A kriging model is made of two components, a regression function f(x) is constructed using 
the data and a Gaussian process Z(x) is built from the residuals [66]. This is expressed 
mathematically as 

 ( ) ( ) ( )Y f Z= +x x x  (6.13) 

where the Gaussian process Z(x) has a mean of zero, variance σ2, and a correlation matrix Ψ.  
It is worth noting that the error model could also be constructed for a combination of modes 
instead of individually for every mode in the basis as follows 

 ( ) ( ) ( )1
1

1

, ,..., , ,
, ,..., , ,

N
eff i i

i i
i

dw x p M d x
x p M

dx dx
η η ϕ

η δ η η∞ ∞
∞ ∞

=

 
= + 

 
∑  (6.14) 

The form of the error model shown in Eq. (6.14) will be used, as it simplifies the construction of 
the kriging models by reducing the size of the input space.  

It is assumed that the primary features of the flow are captured using a steady-state analysis 
[55]. The unsteady effects due to the surface motion of a vibrating panel are accounted for by 
incorporating the time-dependent terms of 3rd-order piston theory.  

The error model iδ was constructed using the Fortran Kriging (ForK) Library with a 2nd-order 
polynomial and the Matèrn correlation function with υ = 3/2. The hyperparameters of the kriging 
model were determined using a pattern search algorithm. Error models for the first four structural 
modes were constructed for the parameter space shown in Table 6.2. The selection of the range 
for each modal amplitude was based on the expected structural deformations from a preliminary 
aeroelastic analysis of the panel undergoing LCO with the aerodynamic pressure computed with 
piston theory.  

Table 6.2. Discrepancy model parameter space. 

Parameter Values Unit 
Altitude 29, 30, 31 km 

Freestream Mach 
Number 5, 7, 9, 12 N/A 

Twall 300 K 

a1 
±4.0, 3.0, 2.0, 

1.0  Non-dim 

a2 
±4.0, 3.0, 2.0, 

1.0 Non-dim 

a3 
±3.0, 2.0, 1.0, 

0.5 Non-dim 

a4 ±1.5, 1.0, 0.5 Non-dim 
 
The high-fidelity data used for the construction and verification of the effective slope error 

model were obtained from solutions of the Navier-Stokes equations using the NASA Langley 
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CFL3D code. This code uses an implicit, finite-volume algorithm based on upwind-biased spatial 
differencing to solve the Reynolds Averaged Navier-Stokes (RANS) equations. No real gas 
effects were included in the analysis since CFL3D is an ideal gas code. The Menter κ–ω SST 
turbulence model is used here for closure of the RANS equations [39]. The computational mesh 
used in this study is the one built by Crowell et al. (2011) with a total of 34,600 cells with a 
maximum y+ value at the wall of 0.65 [55]. Also, the upstream surface was modeled such that 
the transition to turbulent flow occurs one meter upstream of the leading edge of the panel. A 
clamped-clamped 2-D panel is considered in this study as these boundary conditions are more 
representative of what is found in real aircraft structures.  

The first four mode shapes of the 2-D clamped-clamped panel are shown in Figure 6.7; note 
that the zero slope at the leading and trailing edges of the panel eliminate the discontinuity seen 
by the flow that was discussed for the simply-supported panel. Shown in Figure 6.8 is the 
pressure coefficient along the length of the panel for rigid panel shape obtained from the 
combination of the first four structural modes with the following modal amplitudes: a1 = +3, a2 = 
-3.25, a3 = +1.25, and a4 = -0.15. The results were obtained at a freestream Mach number of M1 
= 10 and an altitude of 30km, and computed with CFD (NS), piston theory (PT) and piston 
theory with effective slope (PTeff). The PTeff results show a close agreement with the NS data. 
Based on the L∞ error metric, the error between effPT

pC  and NS
pC is of 4.7% versus 30% between 

PT
pC  and NS

pC . The remaining model uncertainty in the effPT
pC prediction is likely to come from 

the limitations of kriging and the use of a finite number of training data.  
The verification under unsteady conditions was performed by enforcing the panel motion as 

follows 

 ( ) ( ) ( ), sini iw x t a t xw ϕ=  (6.15) 

where ai is the amplitude of mode φi(x) and ω is the frequency of vibration in rad/sec. Shown in 
Figures 6.8-6.12 are the Generalized Aerodynamic Forces (GAFs) obtained from CFD  

( ( )NSGAF ), piston theory ( ( )PTGAF ), and piston theory with effective slope ( ( )effPTGAF ). From 
Eq. (6.16), L and c are the length and width of the panel for displacements proportional to modes 
1, 2, 3, and 4, an oscillation frequency of 100Hz, and the same freestream flow properties 
considered in the verification of the steady-state analysis. The modal amplitudes of the panel 
motion used were a1 = +3.0, a2 = +2.0, a3 = +1.0, and a4 = +0.5. Table 6.3 shows results that 

quantitatively compare ( )NSGAF  to ( )PTGAF  and ( )effPTGAF . With maximum errors 

approximately an order of magnitude less than ( )PTGAF , the ( )effPTGAF results show closer 
agreement with ( )NSGAF .  

Recall that the intent of this research is to identify missing physics within computational 
models, and develop an internal error model to quantify the model-form uncertainty. A kriging 
surrogate was selected to model the internal error through effective slope. This is in contrast to 
external, non-intrusive approaches, as those represented by Eq. (6.8), where the model-form 
uncertainty is quantified directly by comparing the model predictions against experimental 
observations. In the case of the PT model, viscous effects in the form of boundary layer 
displacement thickness were identified as important information that is not included in the 
model. The objective of the PTeff model was to incorporate this missing information in PT. The 
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quantification of model-form uncertainty with the PTeff model corroborates the importance of 
viscous effects in hypersonic flows.  

 ( ) ( ) ( )
0

,
L

i i AGAF t c x p x t dxϕ= ∫    for   i = 1,..., N. (6.16) 

Table 6.3. Difference in GAFs for the Navier-Stokes solution compared to piston theory 
and piston theory with the effective slope model. 

Method 

Max Diff. 
GAFs 

Mode 1 
(%) 

Max Diff. 
GAFs 

Mode 2 
(%) 

Max Diff. 
GAFs 

Mode 3 
(%) 

Max Diff. 
GAFs 

Mode 4 
(%) 

( )PTGAF  120 100.3 107.6 100.2 
( )effPTGAF  10.6 9.2 8.6 7.6 

 
Figure 6.7. Transverse displacement component of the first, second, third, and fourth mode 
shapes of a 2-D clamped-clamped panel. Each mode is scaled by a modal amplitude ai for 

i=1, 2, 3, and 4 
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Figure 6.8. Navier-Stokes, piston theory, and piston theory with effective slope model 

pressure coefficient for panel displacement proportional to a combination of modes 1, 2, 3, 
and 4 at M1 = 10, with modal amplitudes a1 = +3.0, a2 = -3.25, a3 = +1.25, a4 = -0.15 

 
Figure 6.9. Navier-Stokes, piston theory, and piston theory with effective slope Generalized 
Aerodynamic Forces for enforced panel motion w(x,t) = a1 sin(ωt)φ(x) proportional to mode 

1 and frequency equal to 100Hz at M1 = 10 
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Figure 6.10. Navier-Stokes, piston theory, and piston theory with effective slope 

Generalized Aerodynamic Forces for enforced panel motion w(x,t) = a2 sin(ωt)φ(x) 
proportional to mode 2 and frequency equal to 100Hz at M1 = 10 

 
Figure 6.11. Navier-Stokes, piston theory, and piston theory with effective slope 

Generalized Aerodynamic Forces for enforced panel motion w(x,t) = a3 sin(ωt)φ(x) 
proportional to mode 3 and frequency equal to 100Hz at M1 = 10 
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Figure 6.12.  Navier-Stokes, piston theory, and piston theory with effective slope 

Generalized Aerodynamic Forces for enforced panel motion w(x,t) = a4 sin(ωt)φ(x) 
proportional to mode 4 and frequency equal to 100Hz at M1 = 10 

The uncertainty quantified in this model will be propagated to the aeroelastic quantity of 
interest (i.e., limit cycle oscillations) in Section 6.4. However, the next step is to generate and 
verify the other component to the coupled aeroelastic model, namely the structural ROM.  

6.3 Structural Reduced-Order Model (ROM) Construction and Verification 
A structural ROM introduces uncertainty in the analysis in the form of solution approximation 

errors, which is related to the number of basis functions used to construct the ROM. As described 
in Section 6.1, the structural ROMs used in this study are built from a finite element analysis 
(FEA) model; therefore, its predictions can only be as good as the predictions from the FEA 
model that was used to construct it.  

A ROM built with 6 linear modes was constructed for an isotropic 2-D panel clamped along 
the sides perpendicular  to the direction of the flow. The geometric, material properties of the 
panel, and flow conditions are shown in Table 6.4. The ROM was constructed with an in-house 
FEA beam model based on a co-rotational formulation capable of analyzing problems with large 
rotations and small strains. The FEA model was built using 40 beam elements, a total of 123 
degrees-of-freedom. A mesh convergence analysis was performed with respect to the first six 
natural frequencies of the panel and the nonlinear stiffness coefficient K1111.   

Table 6.4.  Aeroelastic model parameters 

Parameter Value Unit 
Altitude 30 km 

Freebody Surface Inclination 5 deg 
Freestream Mach Number 5-12 N/A 

Panel Length 1.5 m 
Panel Thickness 2 mm 

Modulus of Elasticity 113 GPa 
Density 4539 kg/m3 
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The ROM and the FEA model were coupled with PT to predict the aeroelastic response of the 
panel. The quantities of interest are: the LCO amplitude and frequency. These quantities are 
critical for aircraft structural design, since they drive the fatigue life of the panel. The LCO 
amplitude is the maximum displacement for every period of oscillation and it occurs at the ¾-
point along the length of the panel.  

Shown in Figure 6.13 is a comparison of the LCO amplitude as a function of the Mach 
number. The maximum error of the 6-mode ROM relative to the FEA results occurs at a Mach 
number of 12 and is equal to approximately 2%. Shown in Figure 15 is the LCO frequency as a 
function of the Mach number. The maximum relative error in the LCO frequency between the 6-
mode ROM and the FEA is equal to 10% which corresponds to a difference of approximately 
2Hz. As the LCO amplitude grows, oscillations about the deformed configuration become stiffer, 
this is seen by the increasing LCO frequency with respect to the Mach number. The 
quantification of the solution approximation error introduced by the 6-mode ROM suggests that 
more modes would be needed for Mach numbers larger than 12.  
 

 
Figure 6.13.  LCO amplitude at panel three-quarter point as a function of Mach number 

for air properties calculated at an altitude of 30km, FEA, 6-Mode ROM, and 4-Mode ROM 
coupled with 3rd-order piston theory 
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Figure 6.14.  LCO frequency as a function of Mach number for air properties calculated at 
an altitude of 30km, FEA, 6-Mode ROM, and 4-Mode ROM coupled with 3rd-order piston 

theory 

 

The next section investigates the effect of model-form uncertainty in aerodynamic pressure 
predictions on the LCO amplitude and frequency of a panel.  

6.4 Uncertainty Propagation to Coupled Aeroelastic Model Response 
The internal error from Section 6.2 captured the effect of model-form uncertainty through the 

effective slope used in aerodynamic pressure predictions from piston theory. The PTeff model is 
used here to investigate the effect of model-form uncertainty from aereodynamic pressure 
predictions on the coupled aeroelastic response of the 2-D panel described in the previous 
section. The structural solution was obtained using the 6-mode ROM; however, the PTeff model 
only contains information from the first four dominant modes, as the modal amplitudes of the 
last two modes are relatively smaller. The validity of this assumption will be investigated 
through the sensitivity analysis of the four modes at the end of this section.  
Variability in the inputs was modeled with statistical distributions for the freestream pressure p1 
and the modulus of elasticity E. Normal distributions were used with means equal to their 
nominal values shown in Table 6.4 and 1% coefficients of variation. Prior knowledge on the 
model-form uncertainty in PT predictions was incorporated based on previous reports [9] which 
indicated that PT predictions are expected to be accurate within [-19%, 0%].  
Figures 6.15 and 6.16 show the mean and 95% confidence bounds of the LCO amplitude and 
frequency as a function of the freestream Mach number from 1,000 Monte Carlo samples. The 
effects of model-form uncertainty in aerodynamic pressure, quantified with the PTeff model, 
become more pronounced for increasing Mach numbers. At a Mach number of 12, the mean 
values of the LCO amplitude and frequency are 44% and 13% lower, respectively, when model-
form uncertainty from viscous effects in the aerodynamic pressure prediction is incorporated. 
Increasing discrepancies in the LCO amplitude and frequency imply larger uncertainty in the 
stress amplitude and number of cycles that the structure is subjected to. Therefore, future work 
will consider the analysis of the impact of model uncertianty on the fatigue life of the panel.  
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Figure 6.15.  LCO amplitude at panel three-quarter point as a function of Mach number 
for nominal air properties calculated at an altitude of 30km, 6-Mode ROM coupled with 

3rd-order piston theory and 3rd-order piston theory with effective slope model 

 
Figure 6.16.  LCO frequency as a function of Mach number for nominal air properties 

calculated at an altitude of 30km, 6-Mode ROM coupled with 3rd-order piston theory and 
3rd-order piston theory with effective slope model 

Next, the sensitivity of the LCO amplitude and frequency to the aerodynamic pressure 
contributions from the first four modes in the basis is assessed. To this end, distributions of the 
PTeff  model predictions were constructed by adding a ±1% error to the PTeff  computations for 
modes 1-4. The main and total effect indeces were computed using the approach described by 
Saltelli et al. (2010) which leads to a reduction of the computational cost from N2 to N(k + 2), 
where N represents the number of samples and k is the number of uncertain input factors [67]. 
The exploration of the input space is performed using Sobol’ quasi-random sequences [68,69] as 
suggested by Saltelli [67]. The results, shown in Figures 6.17 and 6.18, indicate that the error 
model of mode 2 plays a very important role. The interaction effects, represented by the total 
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effect index, are stronger than the first-order effects for modes 1, 3, and 4. These results suggest 
that the error models of the asymmetric modes (i.e. modes 2 and 4) play a more important role 
than the symmetric modes (i.e. modes 1 and 3). This is not surprising based on the discussion 
from Section 6.2 which indicated that the model-form error becomes more complex for 
increasing mode numbers. These results also imply that the PTeff model should contain 
information from mode 6 (i.e. the next asymmetric mode) as well. These conclusions indicate 
that the information from a sensitivity analysis can be used to guide the construction of the PTeff 
model.  

 
Figure 6.17.  First-order effect sensitivity indices for remaining model-form uncertainty in 

effective slope model as a function of Mach number, modes 1 to 4 

 
Figure 6.18.  Total effect sensitivity indices for remaining model-form uncertainty in 

effective slope model as a function of Mach number, modes 1 to 4 
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6.5 Summary and Conclusions 
The sources of model uncertainty were investigated for aerodynamic pressure and nonlinear 

structural dynamic response predictions in the coupled aeroelastic model of a thin panel 
subjected to hypersonic flow. The model uncertainty was quantified through an internal error 
model at the local slope of the deformed panel, which differs from other approaches that add an 
external discrepancy term to the model prediction. The benefit of capturing the model 
uncertainty at the source within the model helps maintain the underlying physics, while 
improving the accuracy of the prediction. This approach led to significant error reductions 
between 3rd-order piston theory and CFD results, as seen in a verification study performed under 
steady and unsteady flow conditions and for expected panel deformations. The solution 
approximation error in the structural ROM was assessed by comparing the response of a 6-mode 
ROM and a FEA model, both coupled with piston theory. The results suggest that as the limit 
cycle oscillation (LCO) amplitude increases, the solution approximation errors from the ROMs 
become more significant in the structural response. The aeroelastic response of the panel was 
investigated using piston theory with the effective slope-based uncertainty model with the 6-
mode ROM. A large reduction in the predicted LCO amplitude was observed when model-form 
uncertainty was accounted for in the aero-pressure computations. Finally, sensitivity analysis 
was performed to assess the relative significance, on the LCO amplitude, of the structural modes 
that form the ROM basis. The main and total effect sensitivity indices indicated that model 
uncertainty in the pressure component from mode 2 was the most important contributor to the 
total variance. Comparison of the sensitivity indices for modes 1, 3, and 4 suggested that 
interaction plays and important role in the contribution from these modes.  
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7 A PRE-VALIDATION STUDY ON LEGACY HIGH-SPEED WIND TUNNEL DATA 
One of the greatest challenges to the development of scramjet-based hypersonic vehicles is 

accurately modeling the aerothermoelastic response. The interaction of hypersonic 
aerodynamics, structural deformation, and heat transfer pose multiple analysis challenges [23]. 
The computational requirements are too large for a coupled, direct computational fluid dynamics 
and finite element simulation approach, and one cannot simply factor-of-safety out of the 
problem; the mass constraints to meet mission requirements are too tight. Reduced-order models 
are needed, and the errors in those models need to be quantified using validation data. 

Recent studies by AFRL and its affiliates have focused on a reduced-order model approach 
to panel flutter (one of the structural challenges of sustained hypersonic flight), using piston 
theory as the basis for pressure predictions. This group has even pursued validation of piston 
theory using published wind tunnel data originally obtained for other purposes [9,15,23]. Their 
work made use of a 1986 study conducted by Glass and Hunt in NASA’s 8’ High-Temperature 
Tunnel (HTT). While the study by Smarslok and Mahadevan provides a framework for validation 
work, it lacks an essential step in the use of historical data for validation purposes. 

No reduced-order model operates on its own. The boundary conditions and inputs fed into 
said model are derived from predictions produced by other reduced-order models. For example, 
in validating piston theory using the Glass and Hunt 1986 data, one must establish the 
“undisturbed” post-shock flow on which the instrumented dome impinges. In the study by 
Smarslok and Mahadevan [23], these values are produced using 2D oblique shock theory. If 2D 
oblique shock theory is not appropriate, or if there are biases in the reported data, then 
inferences about the validity and accuracy of piston theory drawn from the Glass and Hunt 1986 
data will be wrong. It is to avoid this type of error that a pre-validation study is conducted and 
reported here.  

7.1 Legacy Aerothermal Data from the NASA High-Temperature Tunnel 
In 1986, Glass and Hunt studied the flow over a shallow dome protuberance on a flat plate in 

nominally Mach 6.5 flow to investigate the thermal and structural loads on body panels in extreme 
environments [44]. The experiments in this study were conducted in the NASA Langley 8’ HTT 
and provide rare data relevant to the validation of piston theory. Originally, these data were 
intended to shed light on the flow over shuttle tiles during reentry. 

 
Figure 7.1. Sketch of Apparatus from Glass and Hunt 1986 HTT Experiments 

Domes instrumented with pressure taps and thermocouples were embedded in spherical dome 
specimens on a flat plate held at an inward five degree incline with respect to the flow. So, 
between the flow and the dome plate, there was an oblique shock. The inviscid flow region was 
still supersonic ( 5.7M ≈ ) and uniform post-shock until encountering the spherical dome 
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protuberances. Figure 7.1 illustrates the structure of the flow studied. There were pressure data 
for 33 experiments at 58 locations on the dome.  

Given the simplicity of the flow and the ample data taken, the Glass and Hunt 1986 study would 
seem an ideal candidate for use in the validation of piston theory. In theory, all one should need to 
do is compute the post-shock flow conditions and use these as the “undisturbed” flow conditions 
input into piston theory. The deflections induced by the dome are simple and easy to compute. 
Therefore, determining the discrepancy between piston theory prediction and real pressures 
should be a relatively simple task. 

However, an initial review of the data reveals that the ratio of the measured post-shock static 
pressure to the measured freestream pressure does not match the static pressure ratio obtained 
using oblique shock theory. The Mach numbers reported range between 6.53 to 6.62. The 
reported deflection angle is five degrees. These conditions should produce a weak oblique 
shocks with pressure ratios ranging from 2.11 to 2.13. However, the ratios between the 
measured flat plat pressures and the reported freestream pressures range from 1.85 to 2.00. 
Something is wrong: a bias, either in the data or in its theoretical interpretation. 

The pressure discrepancy is important in that it throws the data, the interpretation of the data, or 
both into question. If the post-shock pressure predicted by oblique shock theory is wrong, then 
so is the post-shock Mach number. That Mach number is a key input into the predictions of piston 
theory. If the pressure measurements are biased, then it throws the pre-shock and post-shock Mach 
numbers into question. Finally, if the discrepancy is due to 3D flow effects, those same effects 
will impact the dome pressure measurements. Whether the measurements are in error or the 
theoretical treatment of the data is in error, there is an error, and that error will affect any 
comparison between the measurements obtained by Glass and Hunt and the predictions of piston 
theory. The identification of that error is the focus of this investigation and constitutes the “pre-
validation study” alluded to in the title. 

There are many potential physical explanations for the pressure discrepancy. Two simple 
explanations are explored here. The first explanation is a bias in the reported freestream 
pressures. A cursory investigation showed that a 10% bias in freestream pressure could readily 
account for the discrepancy in pressure ratios. A 1973 study of the facility (NASA 8’ HTT) 
showed that the pressure profile across the test flow does, in fact, vary on the order of 10% [46]. 
This may be due to the conical nature of the wind tunnel flow. So, if the freestream pressure 
reported was drawn from a different part of the flow than that encountering the test bed, that 
would certainly explain the bias. Alternatively, if the deflection (or effective deflection) of the flow 
were off by half a degree from the nominal five degrees, that too could account for the observed 
pressure ratio discrepancy.a 

Another important potential explanation for the pressure ratio discrepancy is pressure relief via 
a strong edge vortex. (Actually, it would be a pair of edge vortices, one on each side.) This 
possibility is difficult to explore quantitatively because the authors are unaware of a 
computationally efficient edge vortex model. In fact, even CFD-based approaches to supersonic 
vortex modeling are known to suffer from substantial numerical dissipation. Without a concrete 
model structure for the edge vortex, it is not possible to statistically test this potential “bias” 
source. 

Finally, pressure measurements on the dome itself are highly suggestive of an edge vortex. In 
the absence of an edge vortex, pressure taps that reflect each other along the dome diameter 
aligned with the freestream flow should have equal pressure measurements. To be sure, there 
will be some discrepancy attributable to random error, but at first glance, the scale and 
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consistency of that bias would seem to indicate an edge vortex. The evidence for such an edge 
vortex is explored on that basis in this study. 

7.2 Mathematical Methods 
7.2.1 Posterior p-Value 

Assessing the hypothetical sources of pressure ratio bias presents a difficult problem. Given 
the provisional nature of these hypotheses, a p-value approach seems appropriate. However, these 
are not simple hypotheses corresponding to a physical model with a set of parameters. The goal 
here is to test the assertion that there is a bias in the freestream pressure measurements or in the 
deflection angle, without committing to the magnitude of that bias. So, it is a test of model form, 
rather than a test of parameter values. 

Readers unfamiliar with traditional p-values may benefit from a quick review. In short, the 
“p” in “p-value” stands for plausibility. The p-value accorded to a hypothesis reflects its 
plausibility in light of the data. Given a test statistic, the p-value for a hypothesis is the 
probability of having gotten a less favorable test score given that the hypothesis is true. 

That is, if T is the test-statistic, and small values of T(x, H) are favorable to hypothesis H, 
then the p-value for H is as follows:5 

 ( ) ( ) ( )( )'|pls | Pr , ', .X HH T H T H= ≤x x X   (7.1) 

If large values of T(x) are favorable to hypothesis H, then the p-value of H is as follows: 

 ( ) ( ) ( )( )'|pls | Pr , ', .X HH T H T H= ≥x x X  (7.2) 

Given a test-statistic, T(x), the user determines what kinds of values are considered favorable or 
unfavorable. That might seem arbitrary, but a directional preference usually suggests itself. For 
example, suppose µ were the hypothetical mean of X, and 

 ( ) ( )2

1
, .

n

k
k

T x xµ µ
=

= −∑  (7.3) 

Here, T represents a discrepancy, and small values are favorable to the hypothesis in question. 
Alternatively, suppose instead that T were the following likelihood ratio: 

 ( ) ( )
( )'

|
,

max | '
f x

T x
f xθ

θ
θ

θ
=  (7.4) 

where f(x|θ) is the probability of x given θ. In this second example, larger values of T are more 
favorable to the hypothesized value of θ. While not all test-statistics are as simple as measuring 
goodness or badness of fit, their directional interpretations tend to remain intuitive, simply 
because test statistics are designed to support a simple directional interpretation. 

When dealing with a precise hypothesis, computing a p-value is relatively straightforward. If 
nothing else, one can generate Monte Carlo replicates under the assumption that said hypothesis 
is true and record the resulting Monte Carlo sample of the test statistic. The p-value is the number 
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of test statistic replicates of the test statistic that are worse than the one obtained with the real 
data, divided by the total number of Monte Carlo replicates. 

To deal with the compound problem of simultaneously tuning the model parameters and 
assessing the plausibility of the model form, only a slight variant is needed. First, tune the 
parameters to yield either a Bayesian posterior or confidence structure, assuming that the 
hypothesized model form is correct. Compute the test statistic for the observation and tuned 
parameter values. Next, draw a Monte Carlo sample of the parameters from the posterior. For 
each, generate a random value set of the data, xt; re-infer the parameters as though xt were the 
original observation; and recompute the test statistic value. From here, the calculation of the p-
value is the same as for a precise hypothesis. However, instead of testing the hypothesis 

 ( )|x f x θ�   (7.5) 

for some specified θ, the posterior p-value will test the hypothesis that   

 ( ). . |s t x f xθ θ∃ �  (7.6) 

Figure 7.2 demonstrates the power of this approach to falsify a normality hypothesis (i.e. that a 
sample has a normal or Gaussian distribution) when the data are in fact uniform or Cauchy. The 
test statistic used is explained in Section 7.2.3. 

P-values and posterior p-values provide a simple plausibilistic interpretation for statistical 
results. A high p-value reflects that the hypothesis in question is still plausible (i.e. not yet 
falsified) in light of the data, and a low p-value reflects the hypothesis in question is now 
implausible (i.e. falsified) in light of the data. At the risk of redundancy, it should be stressed that 
a high p-value alone does not prove a hypothesis true. In fact, given a set of data, multiple 
competing hypotheses may be plausible. It is only when one has eliminated all reasonable 
alternatives that a given hypothesis may be taken as confirmed by the data. 

 
Figure 7.2.  Falsification Power of Posterior p-Value Approach for Various Sample Sizes 

(Light Blue = 10, Dark Blue = 20, Green = 50, Red = 100) 

~ 
 

~ 
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7.2.2 Metropolis-Hastings Algorithm 
Bayesian inference was accomplished in this study using a slight variant on the Metropolis-

Hastings algorithm. Metropolis-Hastings does not perform Bayesian inference exactly; it yields 
a Monte Carlo sample distributed according to a specified likelihood function: in this case, the 
posterior. The variant used here involves working with iteration on a large sample, rather than 
selection from a recorded Markov Chain. What this variant lacks in computational efficiency, it 
makes up for in simplicity and robustness. 

The process is simple. Start with a seed sample, x0, of desired size. A size of 10,000 is 
sufficient for most Monte Carlo analyses. Next, iterate as follows: 

1. Add a random perturbation, ek , to current sample, xk . Record the result, xt = xk + 
ek. The perturbation, ek , must be an i.i.d. sample of a distribution that is symmetric 
about zero. 

2. Take the ratio of likelihoods, ( )
( )

'

k

R
λ
λ

=
x
x

  

3. Take a random selection seed, u, uniformly distributed on [0, 1]. 
4. Assign members of the current sample and the perturbed sample to the new sample 

according to whether the ratio of a member of the sample is greater than the 
selection seed.  That is, [ ] [ ]'

1, ,k i i i i i i k ix R u x R u x+    = > + ≤    , where [ ]    returns a 
Boolean truth value of zero or one. This formula results in a probability of Ri or 1 
(whichever is less) of replacing xk,i with xt. 

Continue this process until the empirical CDF of the Monte Carlo sample has stopped making 
significant changes. 

When using the algorithm outlined above, the user should be mindful of the following details: 
• The perturbation distribution should be symmetric or near-symmetric. A normal 

distribution with zero mean is a safe option, so long as non-physical samples (if any 
occur) are rejected. 

• It helps to have the perturbation distribution be on the scale of the target distribution. 
The user may or may not be able to guess what that scale is. 

• Since the likelihood ratio drives the selection algorithm, the user does not need to 
know the normalization coefficient of the distribution you are sampling. This is one 
of the most useful features of Metropolis-Hastings. 

• Another major advantage of Metropolis-Hastings over other methods is its 
applicability to multidimensional problems. There is nothing, in principle, to 
distinguish a likelihood over one variable from a likelihood over several. 

• However, the larger the inference problem (in terms of dimensionality), the more 
iterations it takes to converge Metropolis-Hastings. 

A short Matlab example may be instructive.  Suppose the analyst wants to sample from a 
gamma distribution with scale parameter = 1 and shape parameter = 1/2. The probability 
density function for this variable is as follows: 

 ( )
1
2 1xf x x e

π

− −=  (7.7) 
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The analyst could map from a uniform random sample to this distribution by mapping with the 
inverse of the incomplete gamma function. Or, alternatively, the analyst could generate a sample 
more easily using the Metropolis-Hastings algorithm. 

Let N be the desired size of the sample. The following Matlab script will generate an i.i.d. 
sample of size N from the gamma distribution with unity scale and shape of one half: 
 
x0 = - sqrt(2) * log( 1 - rand(N,1) ); 
% initial guess from exponential distr  
x = x0; 
for k = 1:100 

x pr = x + sqrt(2) * randn( N , 1 ); % normal perturbation  
R = exp( x - x pr ) .* sqrt( x ./ x pr ) .* ( x pr >= 0 ); 
u slct = rand( N , 1 ); % uniform sample for selection x = x 
pr .* ( R >= u slct ) + x .* ( R < u slct ); 
% final selection of new xs 

end 
 

 
Figure 7.3.  Calculation of the U-Pool Defect Statistic 

7.2.3 U-pool Defect 
The U-pool defect is a simple and widely applicable test statistic. It was originally suggested 

by Ferson and Oberkampf in their response to the Sandia Challenge Problem and makes use of the 
uniformity of CDF values [70]. Suppose one has a sample, x, and it is assumed that there is some 
value of θ such that x ~ f(x|θ). Then, for some future sample, x, the CDF of the predictive 
distribution based on x should be uniformly distributed. That is F(xt|x) should be an i.i.d. 
uniform sample. The U-pool defect is the area of the absolute difference between the empirical 
CDF of F(xt|x) and the line x = y over [0,1]. 

In this study, a slight variant of the U-pool defect is used; this variant could be called the Auto-
U-pool defect. Instead of taking a second sample, xt, x is simply fed back in as though it were a 
new sample. So, strictly speaking, F(xt|x) with xt = x, won’t be i.i.d. uniform, but as long as the 
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sample size is sufficiently larger than the number of parameters, it will be close enough. Moreover, 
for small sample sizes, Auto-U-pool defect values tend to be smaller than they would be for an 
actual i.i.d. uniform sample; so, it will tend to give high p-values, i.e. conservative inference. 

7.2.4 Confidence Structure on the Non-Parametric Difference 
Confidence structures are a simple and robust alternative to Bayesian inference [71]. There are 

three differences between a confidence structure and a Bayesian posterior. First, a confidence 
structure does not require a prior distribution. Second, while a Bayesian posterior’s belief values 
usually have a subjective interpretation, a confidence structure’s belief values have a statistical 
confidence (i.e. coverage probability) interpretation. Finally, while Bayesian belief values satisfy 
the Kolmogorov axioms, confidence structures only satisfy the more general Shafer axioms. 
This generality enables the application of confidence structures to problems of non-parametric 
statistics, which is useful in this study. 

The Mann-Whitney U-statistic is the foundation of a well-known test for the equality of two 
distributions given no assumptions about the form of those distributions. Moreover, under the 
assumption that the two distributions considered are identical except for an offset, Mann-Whitney 
U is a pivot. That is, U(x – δ,y), where δ is the offset between the distributions of x and y, has a 
known distribution. The pivot is the key! It has previously been demonstrated that a pivot can be 
used to readily construct a confidence structure [71]. The confidence structure developed from 
the Mann-Whitney U-statistic is referred to in this work as the “Non-Parametric Difference.” 

Figure 7.4 illustrates how a pair of samples translates to a non-parametric difference. First, 
one takes all n1 × n2 possible values of x1 − x2 and sorts them in ascending order. This set of points 
partition of the real line. This partition is the set of focal elements for the non-parametric 
difference. Numbering these focal elements, Ak , from 0 to n1 × n2, the weight assigned to Ak is 
equal to the probability that U(x – δ,y) = k, where δ is the true unknown offset. 

 

 
Figure 7.4.  Example of Non-Parametric Difference Confidence Structure 

7.3 Data and Models 
Three of the four potential explanations for the freestream bias are explored using the posterior 

p-value method described in Section 7.2.1. Each of these hypotheses leaves several free 
parameters. First, it is assumed that, even in the absence of bias, there is still a random error in 
the measurements of the pre-shock and post-shock pressures. The random error is assumed to 

76 
Approved for public release; distribution unlimited. 

 



be normal (i.e. Gaussian). However, the standard deviation of these normal errors are not 
known. So, in addition to whatever bias term is inferred, the true pre-shock pressure in each flow 
is inferred, as are the standard deviations of the errors in the pre-shock and post-shock pressure 
measurements. The following subsection describe the exact mathematical models used to 
support these inferences. 

7.3.1 Pre-shock Conditions 
For the analyses in Sections 7.2, it is assumed that there is some error (bias, random, or both) in 

the reported pressures. As mentioned above, the true unknown pre-shock pressure is inferred via 
Bayesian inference. To the authors’ knowledge, there is no such thing as a pure Mach number 
measurement device. Moreover, there is no record of direct velocity measurement (e.g. via laser 
doppler anemometry) in the Glass and Hunt 1986 report. So, it is reasonable to assume that the 
Mach numbers reported in Glass and Hunt [44] were based on the pre-shock pressure 
measurements, as described in the 1973 wind tunnel calibration report [46]. However, if the 
reported pressure has an error, so does the reported Mach number. 

Inferred values of the true pre-shock pressure imply true pre-shock Mach numbers that are 
(slightly) different from the reported Mach number. It is assumed that the reported pre-shock 
Mach number, M∞, corresponds correctly to the reported pre-shock pressure value, p∞. The 
corrected Mach number is adjusted to the inferred pressure on the assumption that the entropy is 
near equal between reported and corrected conditions. This leads to the following 
transformation: 
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 (7.8) 

where γ is the ratio of specific heats (approximately equal to 1.4 at test section conditions), 
p∞T   is the inferred true pre-shock pressure value, and M∞T  is the resulting corrected pre-shock 
Mach number. Using this information, the true value of the post-shock (i.e. flat plate) pressure can 
be calculated as well, according the bias models described in the next three subsections. 

In the bias models explored, it is assumed that the 2D oblique shock relations apply and that 
either random error, bias in the freestream measurements, or bias in the deflection were 
responsible. Under these assumptions, the relationship between the true pre-shock (p∞T ) and 
true post-shock (pfpT ) pressures is given as follows: 
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where β is the shock angle, calculated as follows: 
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where θ is the deflection angle (i.e. the angle by which the flow is turned inward) and λ and χ are 
parameters defined as follows: 

 ( )22 2 2 21 11 3 1 1 tan
2 2T T TM M Mγ γλ θ∞ ∞ ∞

− −  = − − + +  
  

 (7.11) 
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This explicit formulation for the oblique shock relations is available in a commonly used text on 
compressible aerodynamics [72]. 

7.3.2 No-Bias Hypothesis 
Under the “no bias” hypothesis, it is assumed that there is no bias in the measurement of 

either the pre-shock or post-shock pressure, i.e. that any random is error. That is, the observed 
bias between the predicted and observed pressure ratios across the shock is explained as a 
random fluke. 

Given sample values for the true values of pre-shock and post-shock pressures, it is possible 
to calculate the posterior likelihood of said sample. This is a necessary step in executing 
Bayesian inference to tune the parameters in the different bias models. In each, a flat prior for the 
true pre-shock pressures is used. Moreover, a 1

σ  prior is used for the two unknown standard 
deviations. Given the normality assumptions described above, the likelihood can be computed as 
follows: 

 { } { } { } { }( )
( ) ( )

2 2

1 1

1
2

1 1exp
2 2

, | ,
2

k T k Tk k
n n

fp fp

k kfp

fpT T fp n n

fp

p p p p

f p p p p
σ σ

π σ σ

∞ ∞

= = ∞

∞ ∞ +

∞

 − −   
 − −           =

∑ ∑
 (7.13) 

where k indexes the runs, σfp is the standard deviation of the random error in the post-shock (flat 
plate) pressure measurements, and σ∞ is the standard deviation of the random error in the pre-
shock pressure measurements. Both of these standard deviations are unknown; so, n + 2 
parameters are being inferred. There are 2n pressure observations (one on each side of the shock 
for each run); so, as long as more than two runs are used, the problem is closed (i.e. determinate). It 
is this closure that allows the use of non-informative priors. 

7.3.3 Free Stream Bias 
Under the “freestream bias” hypothesis, it is assumed that there is a proportional bias in the 

measurements of freestream pressure, in addition to random error. The resulting likelihood model 
is as follows: 
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where K is the proportional bias, which is an additional inferred parameter. Interestingly, this 
bias is equivalent to having a proportional bias in the measured total (i.e. chamber) pressure, 
meaning that this model covers two (indistinguishable, given the data) possible bias explanations. 

7.3.4 Deflection Bias Hypothesis 
Under the “deflection bias” hypothesis, it is assumed that the deflection is other than the 

reported nominal 5 degrees. The pressure values and likelihoods are related as expressed as in 
Equations 1-2, the deflection angle is merely different. This difference, δθ, is the tunable bias 
parameter. 

7.3.5 Dome Pressure Asymmetry 
If the pressure bias is due to relief from an edge vortex, this edge vortex will also cause 

pressure to decrease from the center towards edges. Three cases were examined: 7in, 14in, 
28in. The relative position of the pressure dome in these three cases is illustrated in Figure 
7.5. Fortunately, in the 7in and 14in runs, the pressure dome is located off-center. Moreover, on 
the front half of the pressure dome, each tap has another tap reflected across the centerline 
oriented with the freestream flow direction. A span-wise decrease in pressure caused by an 
edge vortex would show up as an asymmetry in the pressures between paired pressure taps. 
Conversely, in the absence of an edge vortex, the paired pressure taps should produce 
measurements that are, on average, equal. 

The asymmetry of paired dome pressures was explored using the non-parametric difference 
described in Section 7.2.4. It is assumed that each pair of taps has the same random error 
distribution. It is further assumed that the underlying offset between a given pair of pressure taps 
has a constant value throughout all runs, obscured only by random experimental error. The non-
parametric difference may be taken as a direct measure of the asymmetry in each pair. 

P-values derived from the Mann-Whitney U-test also provide a holistic assessment of 
asymmetry across pressure dome. These p-values were split according to dome diameter (7in, 
14in, or 28in). If the underlying dome pressures were symmetric, then the Mann-Whitney p-
values should be uniformly distributed. The U-pool defect of Section 7.2.3 was then used to 
assess whether or not they were, and whether their deviation from uniformity was statistically 
significant. 

7.4 Results 
7.4.1 Pressure Ratio Bias 

The methods applied in this study were chosen for their robustness, not their computational 
efficiency. As such, it was only possible to generate 100 posterior bootstrap samples. Moreover, 
the limited samples still provided estimates of the p-values for the different hypotheses. Those 
results are as follow: 

- No bias hypothesis: p-value = 0 out of 100 (true pls < 3% with 95% confidence) 
- Freestream bias hypothesis: p-value = 24 out of 100 (true pls between 16% and 34% with 

95% confidence) 
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- Deflection bias hypothesis: p-value = 15 out of 100 (true pls between 9% and 24% with 
95% confidence) 

None of the three hypotheses examined using the posterior p-value approach merited a high 
plausibility. However, only the “no bias” hypothesis was conclusively falsified. It bears noting that 
the mismatch statistic (i.e. the U-pool defect) value obtained for the “bias” case is so much larger 
than its bootstrap counter-parts that using any reasonable curve-fit to those bootstrap samples 
yields a machine-zero p-value for the “no bias” hypothesis. That is to say, the p-value of the no-
bias hypothesis, when approximated using a curve fit to the Monte Carlo statistic sample values, 
is smaller than the computer is able to represent. 

7.4.2 Pressure Tap Asymmetry 
Using the aggregated Mann-Whitney p-values, it was found that: 
- In the 7in case, symmetry is 43.5% plausible; 
- In the 14in case, symmetry is 0.67% plausible; 
- In the 28in case, symmetry is 30.7% plausible. 
Symmetry is statistically implausible for the 14 inch case, where the pressure dome is next 

to the edge, statistically plausible for the 28 inch dome case, in which the dome is centered, and 
plausible for the 7 inch dome case in which the dome is not centered, but also not close to the 
edge. These results are consistent with the existence of a significant edge vortex. 

Figure 7.6 illustrates the level of asymmetry at three point-pairs in the 14-inch case. The 
asymmetry is stronger for points more widely separated. This too is consistent with the 
existence of a significant edge vortex. The front-most point-pair has a backwards (negative) 
offset relative to the other two pairs. It is unknown whether the effect is due to a real underlying 
physical phenomenon (e.g. shock-vortex interaction) or to random measurement error. 

 
Figure 7.5.  Diagram of spherical dome specimens and positions 
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Figure 7.6.  Non-Parametric Difference Across Three Pressure Tap Pairs 

7.5 Conclusions and Future Work 
This research presented a pre-validation study of legacy aerodynamic data obtained in 1986 by 

Glass and Hunt in the NASA 8’ HTT. An apparent bias in the pressure data confounds the direct 
application of these data to the validation of piston theory. Advanced statistical methods were 
applied to explore this bias. 

It is unclear how the observed pressure bias in the Glass and Hunt data originates, but it is 
clear that the bias is the result of unaccounted physics or apparatus bias, and not an artifact of 
random coincidence. Furthermore, there is positive evidence for an edge vortex in the Glass and 
Hunt data. Whether that edge vortex is solely responsible for the discrepancy between expected 
and observed ratios of pre-shock and post-shock pressures remains unknown. Moreover, there may 
be other complex phenomena that would affect the comparison of reduced-order model 
predictions to the Glass and Hunt data. 

While the conclusions presented here are limited, the methods used in this study should be 
new to many readers. The posterior p-value enables the assessment of hypotheses about model 
form, even when model parameters are left free. The Metropolis-Hastings algorithm provides a 
robust way to accomplish the model tuning involved in both traditional Bayesian inference and the 
more computationally intense posterior p-value method. In a different vein, the non-parametric 
difference allows a specialized analysis free from assumptions about distribution form. These 
are the kind of detailed statistical tools that engineers will need if they are to undertake verification, 
validation, and uncertainty quantification successfully. 

Pre-validation work with the Glass and Hunt data is not complete. It is possible that more 
severe statistical tests (e.g. Kolmogorov-Smirnov) may provide a basis on which to falsify 
hypotheses explored in this study. Perhaps more important is the problem of the edge vortex. It 
is impossible to account for the effects of an edge vortex without a coherent hypersonic edge 
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vortex model. To the authors’ knowledge, this remains one of the outstanding problems in 
aerodynamics. 

While there will certainly be some point at which the analyst must say “enough is enough,” 
right now, the unexplained discrepancies in the Glass and Hunt data are too large to ignore. 
Moreover, it is anticipated that legacy hypersonic wind tunnel data are replete with such 
discrepancies. The wind tunnel engineers of previous decades simply did not design their 
experiments with quantitative model validation in mind. However, judicious pre-validation 
studies, like the one commenced here, may ultimately provide a framework for using those legacy 
data in today’s validation efforts.  
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8 UNCERTAINTY QUANTIFICATION OF STATE BOUNDARIES IN THIN BEAM 
BUCKLING EXPERIMENTS 

State selection – or model selection – has garnered interest in many fields including 
phylogenetics [73], social research [74], ecology and evolution [75], protein evolution [76], and 
data mining [77]. Selection of the best model is based either on classical hypothesis testing, 
information theoretic measures, or Bayesian hypothesis testing. Classical approaches test 
likelihood ratio statistics to find the best model [78]. Information theoretic measures are the 
Akaike information criterion (AIC) [79] and its generalization Network information criterion 
(NIC) [80], corrected Akaike information criterion (AICC) [81], the focused information criterion 
(FIC) [82], the Kullback-Leibler information criterion (KLIC) [83], Takeuchi information 
criterion (TIC) [84], minimum description length (MDL) [85],  and deviance information 
criterion (DIC) [86]. The popular Schwarz Bayesian information criterion (BIC) [87] is not an 
information theoretic measure and was originally derived to select the posterior most probable 
model. BIC is often taken as an approximation to Bayes factors [88], which are an element of the 
Bayesian posterior odds ratio. Bayes factors, and by extension, posterior odds, are a natural 
implementation of Occam’s razor [89], and require no modifications for model complexity. No 
assumptions about nested models or estimates of model complexity are required, as with many 
non-Bayesian methods. Further, they are suitable for comparing multiple hypotheses (i.e. 
models), where most classical statistical methodologies only compare two hypotheses. 
Computation of a Bayesian posterior odds [90] does require prior distributions for parameters (or 
prior probabilities for models) to be assumed, which can be a difficult task. Quantifying model 
selection uncertainty is straightforward from the Bayesian posterior odds ratio, which yields 
posterior probabilities for each model which can then be used to rank the models[88,91]. 
Bayesian model averaging [92], which mitigates overconfidence in the model, follows naturally. 
Note that estimation of model selection uncertainty, however, is also possible using model 
selection criterion such as AIC or BIC. These criteria compute model weights that can be 
interpreted as probabilities.  

State boundary uncertainty quantification (SBUQ) quantifies the uncertainty in a boundary 
between two states, as opposed to the uncertainty in model selection. SBUQ, of course, requires 
knowledge of the model selection uncertainty. Previous work on this problem includes that of 
Hombal and Mahadevan [98], who developed a probabilistic treatment of model selection using 
error surrogates that considers uncertainty in the classification boundary. Alternative 
formulations of the SBUQ problem may be possible, each with their own pros and cons. 
Stochastic optimization can provide a distribution of the critical boundary value while being a 
simpler overall methodology, but do not provide a direct means for belief updating in the 
presence of new information. Discriminative classification techniques (e.g., logistic regression 
[99], neural networks [100], support vector machines [101], relevance vector machines [102]) 
may provide a means of obtaining an estimate of the discrete state with an associated confidence 
by regressing on discrete and continuous system inputs. Generative classification techniques 
(e.g., Gaussian discriminative analysis [103]) compare likelihoods between competing models to 
estimate the discrete state. However, individually, either style of classification may not account 
for enough information to confidently determine the state. Discriminative methods may assume 
an incorrect causal interpretation of the system (i.e., responses do not cause the discrete state) 
and pose difficulties when the regressor variables are not independent. Generative methods 
require stronger assumptions about the underlying distribution of the data than discriminative 
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methods and cannot account for uncertainty in the training data labels, making predictions 
overconfident. 

The SBUQ problem was addressed by expressing the Bayesian posterior odds model selection 
formulation of Carlin and Chib [93] and Green [94] is expressed using a Bayesian network (BN) 
[95]. The approach naturally provides posterior probabilities for each candidate model, thus 
providing information about the uncertainty in model selection. The models under comparison 
are generally non-nested and the number of parameters may be difficult to quantify, particularly 
if surrogate models or hierarchical Bayesian models are used to better quantify model 
uncertainty. The BN represents a joint probability distribution in factored form. BNs are well 
qualified for uncertainty quantification tasks due to their probabilistic nature. Their graphical 
representation facilitates system understanding and makes independence assumptions clear. The 
trained BN can then be invoked to perform model selection uncertainty quantification and 
estimate the uncertainty of the critical boundary values. At the cost of being more complex than 
the alternatives, the methodology developed in this study combines discriminative and generative 
classification methods within the Bayesian network, providing a logical system description that 
accounts for uncertainty in the state boundary and allows for belief updating given new 
information. 

Section 8.1 describes a physical example of SBUQ in quantifying the uncertainty in the 
buckling temperature of a thin beam. Section 8.2 explains the SBUQ methodology, including 
construction of the Bayesian network, handling uncertainties in training data, and quantifying the 
uncertainty in the state boundary. Section 8.3 uses data collected from thin beam buckling 
experiments to demonstrate SBUQ by quantifying the uncertainty in the buckling temperature of 
a thin beam, which represents the boundary between the pre-buckled and post-buckled states.  

8.1 Physical Example: Thin Beam Buckling Temperature 
Shukla and Mignolet [104] performed experiments on 11 flat beam specimens for 

identification of the uncertainty in nonlinear reduced order models (ROMs). Variance in the 
experimentally determined natural frequencies was attributed to the uncertainty in the preload 
induced by the boundary conditions and material parameters. However, Perez et al. [36], while 
using the data from Shukla and Mignolet [104] to calibrate a finite element analysis (FEA), noted 
the possibility that the flat beam specimens had buckled. The original experiments were not 
looking for buckling, but the slight changes that buckling causes to the shape of the slender beam 
could have easily gone unobserved. Unfortunately, the amount of experimental data was 
insufficient to prove buckling was occurring and partially responsible for the variance of the 
experimental data. Figure 8.1 illustrates the inconclusiveness of the buckling hypothesis. The test 
data point (red ‘+’) in the lower left of Figure 8.1 could be part of either 1) a ROM that does not 
consider buckling (red line, quadratic fit of data) or 2) FEA (blue lines) that considers buckling.  
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Figure 8.1.  Shukla and Mignolet [104] experimental results compared to finite element 

analysis for pre- and post-buckled operating states. 

In an attempt to determine which explanation was best and create a better model, a new 
experiment for the flat beam was designed. The focus of these tests was to reduce uncertainty 
induced by the boundary conditions and provide sufficient data for calibrating the FEA and 
determining the presence of buckling. This was achieved by using a single beam specimen that 
remained clamped in place throughout the experiment. The beam was repeatedly heated until a 
steady state temperature was reached, then it was allowed to cool. Measurements were obtained 
as the beam cooled. While distinct pre- and post-buckled behavior was not the focus of the 
Shukla and Mignolet [104] experiments, Perez et al. [36] investigated and confirmed this 
phenomenon. The case study presented in Section 8.3 uses this data to quantify the uncertainty in 
the buckling temperature using the state boundary uncertainty quantification methodology. 

The theoretical Euler buckling load of a column, 𝐹𝐹𝑐𝑐𝑐𝑐, may be calculated using classical 
mechanics by  
 
 

𝐹𝐹𝑐𝑐𝑐𝑐 =
𝜋𝜋2𝐸𝐸𝐸𝐸
𝐿𝐿𝑒𝑒2

 (8.1) 

 
where E is the modulus of elasticity, I is the minimum moment of inertia of the cross sectional 
area, and 𝐿𝐿𝑒𝑒 is the effective length of the column considering the boundary conditions. For a 
column with both ends fixed, the effective length is 𝐿𝐿𝑒𝑒 = 0.5𝐿𝐿, where L is the actual column 
length. For this research, critical buckling temperature is of interest. The force induced by a 
temperature load on a beam fixed at both ends is 
 
 𝐹𝐹𝑇𝑇 = −𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇0 − 𝑇𝑇) (8.2) 
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where 𝐸𝐸 is the coefficient of thermal expansion, 𝑇𝑇0 is the reference temperature where the beam 
has zero stress and zero strain, and 𝑇𝑇 is the current temperature. From Eq. (8.1) and Eq. (8.2) and 
with 𝐿𝐿𝑒𝑒 = 0.5𝐿𝐿, the buckling temperature of a fixed-fixed beam is shown in Eq. (8.3). 
 
 

𝑇𝑇𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 =
4𝜋𝜋2𝐸𝐸
𝐸𝐸𝐿𝐿2

+ 𝑇𝑇0 (8.3) 

 
Alternatively, buckling may be considered to occur when the tangent stiffness of the beam 

tends towards zero. At this point, the beam buckles because it cannot tolerate any additional axial 
load. As a result, one or more of the eigenvalues have a zero value, and the natural frequencies 
corresponding to those eigenvalue are also zero. The result is bifurcation in the natural 
frequencies at the buckling temperature. A detailed discussion is available from Kosmatka [105]. 
Figure 8.2 shows a plot of the first and third natural frequencies of the thin beam as computed by 
an idealized finite element model. The bifurcation in the first and third natural frequencies occurs 
at the buckling load. x-axis is ∆𝑇𝑇 = 𝑇𝑇0 − 𝑇𝑇. 

 
The idealized behavior indicates that a precise buckling temperature is identifiable. However, 

in practice this is not the case, as many uncertainties abound in the experimental procedure. The 
result is that the sharp bifurcation of Figure 8.2. is much more rounded (as discussed later in 
Figures 8.6 and 8.7), and the critical buckling temperature where the first natural frequency is 
zero is no longer obvious.  

8.2 Methodology for State Boundary Uncertainty Quantification 
The proposed methodology quantifies the uncertainty in a boundary between two states. It is 

assumed that the transition from state i to state j is smooth, and that only states i and j are under 
consideration in a given analysis. The methodology consists of three basic steps: 

1. Formulate a model selection and state boundary uncertainty quantification (SBUQ) 
problem 

a. Identify possible operating states and corresponding models 
b. Select appropriate variable(s) given observations and models for SBUQ. 

2. Create Bayesian network of the problem 

 
∆T ∆𝑇𝑇 

Figure 8.2. Idealized Buckling Behavior 
An idealized finite element analysis of the thin beam produces these plots of first (left) and 

third (right) natural frequencies vs temperature. 
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a. Define graphical structure corresponding to model selection problem 
b. Prepare training data for BN 
c. Estimate BN distribution parameters 

3. Quantify state boundary uncertainty 
a. Estimate probability of system being in each operating state with respect to a 

particular measurement via inference 
Features of the methodology are illustrated throughout this section using the thin beam 

problem. In this problem, a thin beam subjected to temperature load may be in either a pre-
buckled or post-buckled configuration. Due to many sources of uncertainty, discussed in Section 
8.3, it is difficult to determine the exact buckling temperature of the beam, so the distribution of 
the buckling temperature is sought. 

8.2.1 Probabilistic Model Selection 
Consider a problem domain over the variables 𝐱𝐱 ∈ {x1, … , 𝑑𝑑𝑛𝑛}. x consists of two subsets, the 

set of r observable variables 𝐱𝐱 ∈ {z1, … , z𝑐𝑐} and the set of  of p unobservable (hidden) variables 
𝐡𝐡 ∈ �ℎ1, … ,ℎ𝑝𝑝� such that 𝑛𝑛 = 𝑃𝑃 + 𝑝𝑝. For example, z1 could represent a measurable quantity such 
as velocity or natural frequency while x1 could represent an unobservable system variable such as 
an operating mode, health state, or even measurable quantities for which no measurements are 
available. A single realization of zi is denoted by Zi ∋ 𝒁𝒁and a single realization of xi by Xi. ∋ 𝑿𝑿 
For the model selection formulation, a variable 𝑀𝑀 ∋ 𝐡𝐡, represents a choice of system model 
(operating mode) that cannot be directly measured or observed. As such, the value of M, i.e., M = 
m1 and M = m2, must be inferred by considering the measured variables z.  

The critical value of measurement variable 𝑧𝑧𝑖𝑖, denoted 𝑧𝑧𝑖𝑖𝑐𝑐, is the boundary between two states 
(models) M = m1 and M = m2 along dimension 𝑧𝑧𝑖𝑖. For example, 𝑧𝑧𝑖𝑖𝑐𝑐 could, refer to the stress at 
which a material switches from elastic to plastic behavior.  Estimating 𝑃𝑃𝑃𝑃�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝐙𝐙� over a 
range of 𝑧𝑧𝑖𝑖 presumed to contain 𝑧𝑧𝑖𝑖𝑐𝑐 provides the information to estimate the distribution of 𝑧𝑧𝑖𝑖𝑐𝑐, 
�̂�𝑝(𝑧𝑧𝑖𝑖𝑐𝑐). The estimation of 𝑃𝑃𝑃𝑃�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝐙𝐙� may be viewed through the Bayes factor and 
probabilistic model selection.   

Given observations Z and model choices M = m1 and M = m2, the ratio of posterior odds for 
competing models is 
 

𝑃𝑃𝑃𝑃(𝑀𝑀 = 𝑚𝑚1|𝒁𝒁)
𝑃𝑃𝑃𝑃(𝑀𝑀 = 𝑚𝑚2|𝒁𝒁) =

𝑃𝑃𝑃𝑃(𝒁𝒁|𝑀𝑀 = 𝑚𝑚1)
𝑃𝑃𝑃𝑃(𝒁𝒁|𝑀𝑀 = 𝑚𝑚2) ×

𝑃𝑃𝑃𝑃(𝑀𝑀 = 𝑚𝑚1)
𝑃𝑃𝑃𝑃(𝑀𝑀 = 𝑚𝑚2) (8.4) 

The first term on the right hand side is the Bayes factor, 𝐵𝐵𝑖𝑖𝑗𝑗, and the second term is the ratio of 
prior odds. Thus, the Bayes factor is the ratio of prior to posterior odds. When 𝑃𝑃𝑃𝑃(𝑀𝑀 = 𝑚𝑚1) =
𝑃𝑃𝑃𝑃(𝑀𝑀 = 𝑚𝑚2), the Bayes factor is the posterior odds ratio. When the posterior odds ratio is equal 
to 1, both models are equally likely. As 𝐵𝐵12 increases, the evidence against M = m2 increases, 
providing a basis for model selection. 

A probabilistic model selection problem can be formulated where the model choice is 
included as a discrete random variable [93,94]. Suppose the problem is to select from amongst K 
possible model choices, each with parameter vector 𝜽𝜽𝑗𝑗 , 𝑗𝑗 = 1, … ,𝐾𝐾. Let y be a vector of 
observable system responses. Using a Bayesian model specification, the prior probability of the 
models is 𝜋𝜋𝑗𝑗 = 𝑃𝑃𝑃𝑃 (𝑀𝑀 = 𝑚𝑚𝑗𝑗), with ∑ 𝜋𝜋𝑗𝑗𝐾𝐾

𝑗𝑗=1 = 1. The model parameters 𝜽𝜽𝑗𝑗  are conditioned on M 
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with prior 𝑝𝑝�𝜽𝜽𝑗𝑗�𝑀𝑀 = 𝑚𝑚𝑗𝑗�, and the likelihood function for model j is 𝑓𝑓�𝐳𝐳�𝜽𝜽𝑗𝑗 ,𝑀𝑀 = 𝑚𝑚𝑗𝑗�. The joint 
posterior distribution is 
 

𝑝𝑝�𝒛𝒛,𝜽𝜽𝑗𝑗 ,𝑀𝑀 = 𝑚𝑚𝑗𝑗� = 𝑓𝑓�𝒛𝒛�𝜽𝜽𝑗𝑗 ,𝑀𝑀 = 𝑚𝑚𝑗𝑗� ��𝑝𝑝�𝜽𝜽𝑖𝑖�𝑀𝑀 = 𝑚𝑚𝑗𝑗�
𝐾𝐾

𝑖𝑖=1

� 𝜋𝜋𝑗𝑗 (8.5) 

 The beam buckling problem of Section 8.1 considers two possible configurations (K = 2), i.e., 
pre-buckled and post-buckled. The models for the first and third natural frequency in each 
configuration have their own set of parameters and prior probabilities, so we have 𝜃𝜃𝟏𝟏 =
�𝜃𝜃1

𝑓𝑓1,𝜃𝜃1
𝑓𝑓3�,  𝜃𝜃𝟐𝟐 = �𝜃𝜃2

𝑓𝑓1,𝜃𝜃2
𝑓𝑓3�, 𝜋𝜋1 = �𝜋𝜋2

𝑓𝑓1,𝜋𝜋2
𝑓𝑓3�, and 𝜋𝜋1 = �𝜋𝜋1

𝑓𝑓1,𝜋𝜋1
𝑓𝑓3�. Where 𝜋𝜋1 and 𝜋𝜋2 depend 

on the temperature, T, thus  𝜋𝜋𝑗𝑗 = 𝑝𝑝�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝑇𝑇�.  The value of M, a post-buckled or pre-buckled 
model, is not always observable. The measured values Z consist of the first and third natural 
frequencies as well as the temperature, T. Although M may be observable in some states of the 
system (e.g. when buckling is clearly visible via the naked eye or from strain gages) and included 
in Z, this does not necessarily occur in the region of interest. 

The quantity of interest for model selection is the posterior probability of  𝑝𝑝�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝜽𝜽𝑗𝑗 ,𝐙𝐙�, 
 
 

𝑝𝑝�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝜽𝜽𝑗𝑗 ,𝒁𝒁� =
𝑓𝑓�𝒁𝒁�𝜽𝜽𝑗𝑗 ,𝑀𝑀 = 𝑚𝑚𝑗𝑗��∏ 𝑝𝑝�𝜽𝜽𝑖𝑖�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝐾𝐾

𝑖𝑖=1 �𝜋𝜋𝑗𝑗
∑ 𝑓𝑓(𝒁𝒁|𝜽𝜽𝑏𝑏 ,𝑀𝑀 = 𝑚𝑚𝑏𝑏)[∏ 𝑝𝑝(𝜽𝜽𝑖𝑖|𝑀𝑀 = 𝑚𝑚𝑏𝑏)𝐾𝐾

𝑖𝑖=1 ]𝜋𝜋𝑏𝑏𝐾𝐾
𝑏𝑏=1

 (8.6) 

 
which is also an element in the posterior odds ratio of Eq. (8.4). In terms of the beam buckling 
problem, Eq. (8.6) gives the probability that the beam is in either the pre-buckled or post-buckled 
configuration. Given N samples from the posterior distribution, the posterior probability of M = 
mj is approximated by 
 
 

�̂�𝑝�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝒛𝒛� =
# samples where 𝑀𝑀 = 𝑚𝑚𝑗𝑗

𝑁𝑁
 (8.7) 

 
The formulation of Eq. (8.6) can be expressed using a Bayesian network (BN), as discussed in 

the next section.  

8.2.2 Bayesian Network Formulation of Probabilistic Model Selection  
A Bayesian network (BN) represents, graphically and mathematically, the joint probability 

distribution over a set of variables, 𝐱𝐱 ∈ {x1 … x𝑛𝑛}. A BN is a directed acyclic graph (DAG): the 
edges (arrows) specify the dependence structure of x, which is represented by nodes. The acyclic 
requirement provides that starting from node i, there exists no path in the network to return to 
node i. The joint distribution may be written in factored form as  
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Figure 8.3.  Bayesian network of beam buckling system 

 
𝑝𝑝(𝑑𝑑1, … 𝑑𝑑𝑛𝑛) = �𝑝𝑝(𝑑𝑑𝑖𝑖|𝛱𝛱𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 (8.8) 

where Π𝑖𝑖 is the set of parent variables for x𝑖𝑖, i.e., the variables on which x𝑖𝑖 is immediately 
dependent, and 𝑝𝑝(x𝑖𝑖|Π𝑖𝑖) is the conditional probability distribution (CPD) for x𝑖𝑖. If Π𝑖𝑖 = ∅, 
𝑝𝑝(x𝑖𝑖|Π𝑖𝑖) = 𝑝𝑝(x𝑖𝑖) is a degenerate conditional probability distribution, but in this paper the term 
CPD shall include both regular and degenerate CPDs.  

The Bayesian network of the thin beam system is shown in Figure 8.3 and the conditional 
probability distributions are summarized in Table 8.1. The temperature load, T, is considered a 
deterministic input, indicated by the square node. It is assumed that T will always be available 
(this assumption could be relaxed by assuming a distribution for T). The buckling state, b, is a 
binomial logistic regression for predicting whether the beam is either pre- or post-buckled 
depending upon T. The first and third natural frequencies, f1 and f3, are modeled as Gaussian 
processes based on T. Since the natural frequencies also depend upon the buckling state, b, there 
is a Gaussian process model for each state for both f1 and f3. Thus, the BN contains a total of 4 
Gaussian process models. Parameterization of the BN is discussed in the next section. Inference 
in the BN of Figure 8.3 is performed via likelihood weighting, a form of importance sampling 
that is suitable for low dimensional networks [28]. 

 
8.2.3 Handling Uncertainty in Training Data Near the Boundary 

Given that the state boundary itself is uncertain, data obtained near the boundary may not 
belong to an obvious state and thus have no class label associated with it. Such data is called 
unlabeled data. This is problematic because estimating model training/calibration requires 
complete data (i.e., no missing values). Even so, unlabeled data may contain important 
information about system behavior, and has been shown under appropriate modeling 
assumptions to improve the Fisher information metric [96] (a measure of the value of training 
data) of the probability model [97]. For example, the 4-tuple of data (T,b,f1,f3) may not have a 

Table 8.1. Bayesian network variables  

Variable Symbol CPD Cardinality 
Temperature T Deterministic Input Continuous 
Buckling b Logistic Regression Binary 
1st natural frequency f1 Gaussian Process x 2 Continuous 
3rd natural frequency f3 Gaussian Process x 2 Continuous 
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value of b, but still have values for f1 and f3 that can be used for analysis. This situation occurs 
near the state transition boundary because it is difficult to pinpoint the exact moment when 
buckling occurs on a vibrating beam specimen. 

 

 
Figure 8.4. The labeling boundary is a weighted average of the temperatures at which the f1 

and f3 mean functions are at their respective minimums 

In the thin beam problem, the state transition boundary corresponds to the temperature at 
which the natural frequencies are at their minimum. Figure 8.4 shows the mean Gaussian Process 
(GP) model responses (with ΔT as the independent variable) constructed from the training data 
for f1 and f3. No labels for pre- or post-buckling are required to fit these GP models.  The 
threshold ΔT value for classification is unclear because, as seen in Figure 8.4, the mean curves 
for f1 and f3 have minimum values at different temperatures, (∆𝑇𝑇1′  and ∆𝑇𝑇3′). This is an indicator 
of the uncertainty in the buckling temperature and the reason for being unable to confidently 
label the data in the first place. To account for the uncertainty in the training data, a variance 
weighted labeling threshold ∆𝑇𝑇𝑡𝑡ℎ𝑐𝑐𝑒𝑒𝑟𝑟ℎ = 𝑑𝑑1∆𝑇𝑇1′ + 𝑑𝑑3∆𝑇𝑇3′ is estimated, where 𝑑𝑑1 = 1 −
𝜎𝜎12′  (𝜎𝜎12′  + 𝜎𝜎32′)⁄  and 𝑑𝑑3 = 1 − 𝜎𝜎32′  (𝜎𝜎12′  + 𝜎𝜎32′)⁄ .  the variances at both minimums (𝜎𝜎12′  and 
𝜎𝜎32′) are calculated from the GP models. The training data can now be labeled as either pre- or 
post-buckled using the class boundary, and the 4 GP models describing f1 and f3 in the pre- and 
post-buckled states can now be trained. These GP models may be built with standard covariance 
functions, such as the Matern class and trained using maximum likelihood estimation or 
Bayesian methods. 

Even with an estimate of the labeling threshold, these GP models include little information 
about the confidence in the labels assigned to the training data. This labeling uncertainty is 
accounted for in the BN by the logistic regression: the likelihoods of the f1 and f3 predictions will 
be combined with the probability of being pre- or post-buckled during Bayesian updating in the 
BN, as determined by a logistic regression, represented by b in the Bayesian network of Figure 
8.3. The logistic regression computes the probability of being either pre- or post-buckled as a 
function of temperature. The probability effectively weights the confidence in the responses from 
the GP model at a given temperature.  
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The regression of a training set of m labeled examples ��𝑑𝑑(1),𝑦𝑦(1)�, … , �𝑑𝑑(𝑚𝑚),𝑦𝑦(𝑚𝑚)��, where 
the discrete variable 𝑦𝑦(𝑖𝑖) has k possible outcomes and 𝑑𝑑(𝑖𝑖) ∈ ℝ𝑛𝑛+1 with x0 = 1 as the intercept 
may be described by  
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 (8.9) 

 
with parameters Θ = 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑏𝑏and normalizing term 1 ∑ 𝑒𝑒𝜃𝜃𝑗𝑗

𝑇𝑇𝑥𝑥(𝑖𝑖)𝑏𝑏
𝑗𝑗=1⁄ . If k = 2, this is a logistic 

regression, and if k > 2, the regression is termed a multinomial logistic regression or softmax 
regression [99]. 

Typically, the data for training the logistic regression would consist of labeled data where the 
gradual change in probability of observing the different classes is reflected in the training data. 
However, since the training data was labeled using an abrupt boundary, a logistic regression 
fitted to the training data will reflect this by having a sharp boundary between classes. The 
gradual transition between classes expected to arise due to experimental uncertainties will not be 
present. However, a process called L2 regularization (or variously Tikhonov [106] regularization 
or ridge regression [107]) provides a means of controlling the sharpness of the class boundary. L2 
regularization is often used to limit model complexity by adding a weight decay term to the cost 
function being minimized during regression. Increasing the size of the penalty has the effect of 
smoothing the model. The weight decay term is often found via cross-validation to find the 
model that achieves the best predictive performance. Equation (8.10) shows the cost function for 
logistic regression with a weight decay term with parameter λ added on the right hand side. 
Equation (8.10) is minimized for a given λ to find the optimal parameters Θ.  
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 (8.10) 

 
In this study, the weight decay term is varied until the resulting logistic regression fits the 

expert’s beliefs about the probability of being in the post-buckling condition at a particular 
temperature (e.g., 1% probability at ΔT = 7° C). The expert would make this judgment 
qualitatively or by employing heuristics, the goal being to capture the region of classification 
uncertainty. Then, by finding the temperature corresponding to 50% probability, symmetry can 
be used to find the boundary on the other side, as the logistic regression assumes the log odds of 
the probability varies linearly. This procedure provides a means to fuse expert opinion into the 
methodology.  
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8.2.4 Quantification of State Boundary Uncertainty 
With a trained BN available, the model variable, M, can be inferred. Given some set of 

measurements, Z, that does not include the model variable M, the inference algorithm is run with 
N samples to estimate �̂�𝑝�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝐙𝐙� for all j. Of course, Z represents only one instantiation of 
the measured variables. Thus, �̂�𝑝�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝐙𝐙� is only a point estimate of probabilities of 𝑀𝑀 = 𝑚𝑚𝑗𝑗. 
To determine the distribution of the boundary, �̂�𝑝(𝑧𝑧𝑖𝑖𝑐𝑐), the value of �̂�𝑝�𝑀𝑀 = 𝑚𝑚𝑗𝑗�𝐙𝐙� must be 
computed via inference over a range of values for 𝑧𝑧𝑖𝑖. While 𝑧𝑧𝑖𝑖 values are selected to represent a 
range of 𝑧𝑧𝑖𝑖, no selection criteria is extended to 𝑧𝑧¬𝑖𝑖 (¬𝑖𝑖 refers to all indices except i). Figure 8.5 
illustrates how the probability of M being in one of two states changes with a variable 𝑧𝑧𝑖𝑖 and the 
resulting distribution of 𝑧𝑧𝑖𝑖𝑐𝑐. 

 
In the beam buckling problem, �̂�𝑝(𝑧𝑧𝑖𝑖𝑐𝑐) is the distribution of the buckling temperature, which is 

estimated by evaluating the probability of the model being in the pre-buckled or post-buckled 
state at predetermined temperature values. Temperature is the  𝑧𝑧𝑖𝑖 variable and the first and third 
natural frequencies, f1 and f3, are the 𝑧𝑧¬𝑖𝑖 variables, which are allowed to vary. 

8.2.5 Methodology Summary 
A methodology was developed for the quantification of state boundary uncertainty. First, a 

model selection problem is developed. The model selection problem is then formulated as a BN. 
Data near the boundary is classified using an optimization algorithm. The BN may then be 
trained. Finally, inference is performed in the BN for a range of values of the variable of interest. 
A probability distribution of the state boundary is then constructed. Next, a case study is used to 
demonstrate the methodology.  

8.3 Case Study: Thin Beam Buckling 
Section 8.2 outlined a methodology for quantifying the uncertainty in the state boundary, 

which is applied in this section for the pre- and post-buckled states of a thin beam subjected to a 
thermal load. 

8.3.1 Experimental Procedure 
Due to the difficulty of observing buckling temperature directly with any reasonable 

confidence (particularly in the region of interest), Perez et al.38 developed an experiment to 
measure the natural frequencies of a thin steel beam.  

  
Figure 8.5. State boundary uncertainty 

Left: Pr(M = m1) and Pr(M = m2) vary as the boundary x = 0 is approached. Right: The 
distribution of the critical z value that marks the boundary between M = m1 and M = m2. 
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The thin steel beam (E = 200 GPa, ρ = 7860 kg/m3) was mounted on a clamped-clamped 
support with two bolts tightened with a torque wrench on either end. The beam dimensions were 
22.86 cm (x-direction) x 1.27 cm (y-direction) x 0.0788 cm (z-direction). The straightest beam 
specimen available was selected to minimize the initial curvature of the beam.  The beam was 
subjected to vibration, Fz, in the z-axis from a magnetic driver, which was supplied a random 
noise signal. The driver was positioned near the support to minimize the oscillation amplitude. 
The beam deflection was measured with a laser vibrometer at the center of the beam. From these 
measurements, the transient power spectral density (PSD) was computed. Time histories of 
natural frequencies were then extracted from the PSDs. 

Thermocouples were attached to the beam to monitor the temperature. The beam was heated 
to a post-buckled state and held until steady state temperature was achieved, then allowed to 
cool. As the beam cooled, natural frequencies and temperatures were recorded at specific 
intervals. The heating and cooling process was repeated five times with the same clamped beam 
specimen to minimize variability in boundary conditions between experiments.  

8.3.2 Uncertainty in Buckling Temperature Identification 
Many uncertainties arise out of the experimental process through the combination of 

laboratory environment uncertainties, test equipment limitations, and computational errors. 
These uncertainties result in behavior that deviates from the predictions of idealized models. 
Deflection measurements from the laser vibrometer may be erroneous if the laser is not reflected 
directly back at the source, which contains a sensor for measuring distance. This may happen if 
the laser is not pointed directly at an inflection point and the deflection is large. 

Temperature readings contain uncertainties due to changing ambient air conditions (largely 
due to climate control systems in the laboratory) and heating of the beam, which is difficult to 
control. The ambient temperature was between 13 and 14 degrees Celsius for each of the 5 tests. 
Uncalibrated or damaged thermocouples can produce erroneous data. Furthermore, due to 
equipment limitations, only initial and final temperature values are measured at 3 locations on 
the beam (left, middle, and right). A quadratic cooling model is used to calculate intermediate 
temperatures. Zero mean Gaussian noise with a coefficient of variation of 0.01 is added to each 
initial temperature to simulate the effect of measurement noise before fitting the cooling model. 
Synchronization with deflection (and subsequently frequency) measurements is difficult to 
achieve, as the acquisition systems for each measurement are independently operated. Noise is 
added back to the temperature measurements by adding zero mean Gaussian noise with a 
standard deviation of 0.025, a value experimentally determined to approximate the noise in 
temperature measurements.  

The first and third natural frequencies (f1 and f3) are extracted from the power spectral 
densities (PSDs) of the beam response. However, the PSDs are only approximations that are 
based on a window of transient data. The time length of the window affects the smoothness of 
the PSD. A peak detection algorithm is used to find the natural frequencies within the PSD. 

Other sources of uncertainty (e.g., initial stress state and boundary conditions of the beam, 
initial curvature and geometry of the beam, locations of heat lamps) make repeatability of the 
experiment difficult.  

8.3.3 Experimental Data 
Figure 8.6 shows experimental data for the first four iterations of the experiment. Each 

iteration consists of heating and cooling the beam. The same beam and boundary conditions are 
used for each iteration. The sharp bifurcation seen in the idealized frequency response in Figure 
8.2 is blunted in both Figures 8.6 and 8.7. It was not possible to experimentally obtain 0 Hz 
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natural frequencies due to uncertainties. It is difficult to ascertain whether the beam is in a pre- or 
post-buckled condition between about 3.5 and 6° C above ambient temperature because the 
results do not converge on a clear buckling temperature. Furthermore, the first natural frequency 
suggests a lower buckling temperature than the third natural frequency. Thus, it is difficult to 
confidently label data in this region. The classification boundary determined by finding the 
minimum frequencies via optimization is shown in Figure 8.4.  

 

  
Figure 8.6. Four experiments with the expert’s 99% confidence bounds for data labeling 

8.3.4 Bayesian Network and SBUQ   
The BN of the system is shown in Figure 8.3 with parameters described in Table 8.1. The GP 

models are built using the Gaussian Processes for Machine Learning (GPML) toolbox for Matlab 
and have Matern covariance functions [108]. Figure 8.7 shows GP model fits with +/- 3σ 
(standard deviation) bounds using the first four sets of experimental data. The data has been 
labeled using the procedure discussed in Section 8.2, resulting in a different set of training data 
for each of the four GP models. It can be seen that each model has regions of lower variance, 
where it has training data (training data is color coded for each model), and regions of larger 
variance, where the model extrapolates. Similar variances for the models around the buckling 
temperature indicate that neither model is strongly preferred in this region.   

To fit the logistic regression of the discrete variable b on temperature, T, the analyst selects a 
temperature value where they have 99% confidence that the beam is pre-buckled, based on the 
first four tests. This value is 3.25° C and is indicated by the left thick black line in Figure 8.8. An 
upper value of the region of uncertainty is determined via symmetry as 7.33° C. The penalty 
parameter, λ, is determined via optimization. The teal line in Figure 8.8 shows the resulting 
logistic regression from the first four tests. The more uncertainty in the data, the greater the 
distance between thick black lines. 

 

94 
Approved for public release; distribution unlimited. 

 



 

 
 

 
Figure 8.8. Normal CDFs of original data fitted via least squares. Data points are shown. 

 
Figure 8.7. GP model fits, training data, and 3σ prediction bounds. 
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The teal line in Figure 8.8 corresponds to the post-buckling probability calculated using the 
logistic regression with temperature values from test 5. The colors blue, green, and red refer to 
scenarios where in addition to T, measurements of f1, f3, and [f1, f3] are included in the analysis, 
respectively. These estimated probabilites of post-buckling, denoted by an ‘x’ in Figure 8.8, are 
calculated as in Section 8.2.  

The estimated probabilities in Figure 8.8 do not necessarily result in an increasing function 
due to noise in the training data and errors in estimating the GP parameters. At a given value of 
T, the probability of post-buckling is a distribution, and test 5 only provides point estimates of f1 
and f3, resulting in only one sample of the post-buckling probability. Because there is no 
guarantee that this probability increases with T, the probability of post-buckling as a function of 
temperature cannot be interpreted as a CDF, as would be desired. However, in situations where 
decreasing probabilites can be attributed to noise or outliers in the data that can be ignored, a 
couple options are available to obtain a CDF. 1) A parametric CDF may be fit to the probabilities 
or 2) the probabilities may be smoothed/adjusted to ensure that the probabilites are always 
increasing to construct an empirical CDF.  The smooth lines in Figure 8.8 correspond to least 
squares estimates of Gaussian CDFs to the post-buckling probabilities. The curves appear to fit 
the data quite well, qualitatively. Quantitative goodness-of-fit tests are problematic because they 
assume a true empirical CDF is being tested or can be skewed by a single outlier. Figure 8.9 
shows the Gaussian PDFs corresponding to the CDFs of Figure 8.8. The Gaussian distribution 
parameters are shown in Table 8.2. The standard deviation and coefficient of variation of the 
buckling temperature decrease as more measurement variables are considered, indicating an 
increase in precision with information. It is not possible to assess the solution bias, as the true 
buckling temperature is unknown. 

 
 
 
 
 

 
Figure 8.9. PDFs of buckling temperature corresponding to fitted CDFs. 
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Table 8.2. Gaussian distribution parameters. 

Scenario Mean (°C) Standard Deviation Coefficient of 
Variation 

T, f1, and f3 measured 5.07 0.08 0.016 
T and f3 measured 5.13 0.21 0.041 
T and f1 measured 5.10 0.49 0.096 
T measured 5.28 0.86 0.16 

 

8.3.5 Results and Discussion 
Experimental and computational uncertainties impede confident labeling of the system state. 

This results in a semi-supervised learning problem, where some of the training examples can be 
classified, while others, in the region of interest near the boundary, cannot. The proposed 
methodology fuses expert opinion with both discriminative and generative classification methods 
in a Bayesian network framework to estimate uncertainty in the critical buckling temperature in 
the presence of such classification uncertainties. Discriminative methods (e.g., logistic 
regression) make weaker assumptions about underlying distributions but require more training 
data than generative methods (e.g., Gaussian discriminant analysis), which trade data for stronger 
assumptions about underlying distributions.  

In the example problem, the logistic regression is the discriminative classification method and 
the GP models represent the generative method. The weight decay parameter λ that results from 
regularization of the logistic regression is a convenient way to account for expert opinion. In the 
beam example,λ was chosen such that the logistic regression matched where the analyst was at 
least 99% in the labels of the experimental data. Without this regularization, the logistic 
regression would simply show a sharp change in probability at the temperature Top, which was 
determined by using the temperature where the frequencies are at a minimum for labeling the 
data. This would result in overconfidence in the estimate of the buckling state. 

Uncertainty in classification based on temperature passes from the regularized logistic 
regression to the GP models during Monte Carlo inference. Uncertainties arise in the collection 
and estimation of temperature data and in computational errors in the frequency data due to 
approximating the FFT from velocity measurements collected over a window of time. These 
uncertainties manifest themselves as variance in GP predictions, which is then reflected in 
decreased likelihoods for frequency measurements. Further, data points near the buckling 
boundary may have initially been assigned to the wrong GP model, causing the wrong GP model 
to produce larger likelihoods near the boundary. Likelihoods resulting from extrapolation outside 
the training data may have limited value. However, the logistic regression helps guard against 
these issues by producing varying the amount of samples associated with each buckling state 
according to expert opinion.  Ultimately, the estimated bias and variance of the critical buckling 
temperature distribution both depend on the quantity and the quality of the experimental data, 
modeling assumptions, and computational procedures. 

The example problem showed how uncertainty in the buckling temperature of a beam may be 
quantified, and can result in a parametric distribution for the buckling temperature. The reduction 
in uncertainty by providing additional measurement data to the analysis is evident from the 
decreasing variance of the distributions. Reduction of uncertainty is not guaranteed, however. If 
the buckling temperature were insensitive to a particular measurement, there would be little 
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effect on the buckling temperature distribution. Or, a faulty sensor could increase uncertainty in 
the buckling temperature. 

It should be noted that the methodology was demonstrated using particular statistical 
techniques (logistic regression, Gaussian process models, likelihood weighting inference). 
However, these need not be the only options. Many other classification techniques could take the 
place of logistic regression, e.g., support vector machines, neural networks, Gaussian processes. 
The GP models for the natural frequencies could instead be relevance vector machines or 
polynomial chaos models or some other response surface method. Likelihood weighting 
inference could be replace with a Gibbs sampling scheme.  

8.4 Summary of State Boundary Uncertainty Quantification 
The ability to assess uncertainty in state boundaries is of particular importance for complex 

systems that have many discrete model choices. This section discussed a methodology for 
quantifying the uncertainty in a boundary between two system states, namely buckling in a thin 
beam. First, the system is cast in a Bayesian network framework containing a logistic regression 
classifier and Gaussian process surrogate models. The BN is trained using data labeled via an 
optimization procedure. Inference in the Bayesian network is performed using likelihood 
weighting. Uncertainty in the correct model of the system is quantified over a range of values of 
a measured variable to obtain the distribution of the state boundary. A Gaussian CDF is fit to the 
probability of the beam being post-buckled as a function of temperature, and it is seen that the 
methodology provides more precise estimates as more measurements are made available. The 
methodology was demonstrated using experimental data from a thin beam experiment. 
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